References

  1. 2013 ASHRAE Handook. Fundamentals (SI Edition).

  2. Aalto, M., Keskinen, K.I.; Liquid Densities at High Pressures. Fluid Phase Equilibria 166 (1999) 183-205, http://dx.doi.org/10.1016/s0378-3812(99)00300-3

  3. Aalto, M., Keskinen, K.I., Aittamaa, J., Liukkonen, S.; An Improved Correlation for Compressed Liquid Densities of Hydrocarbons. Part 1. Pure Compounds. Fluid Phase Equilibria 114 (1996) 1-19, http://dx.doi.org/10.1016/0378-3812(95)02822-6

  4. Aalto, M., Keskinen, K.I., Aittamaa, J., Liukkonen, S.; An Improved Correlation for Compressed Liquid Densities of Hydrocarbons. Part 2. Mixtures. Fluid Phase Equilibria 114 (1996) 21-35, http://dx.doi.org/10.1016/0378-3812(95)02824-2

  5. Adachi, Y., Lu, B.C.-Y., Sugie, H.; A Four-Parameter Equation of State. Fluid Phase Equilibria 11 (1983) 29-48, http://dx.doi.org/10.1016/0378-3812(83)85004-3

  6. Ahmed, T.; Equations of State and PVT Analysis: Applications forImproved Reservoir Modeling, 2nd Edition. Gulf Professional Publishing, 2016, ISBN 9780128015704,, http://dx.doi.org/10.1016/B978-0-12-801570-4.00002-7

  7. Ahmed, T.; Hydrocarbon Phase Behavior. Gulf Publishing, Houston, TX, 1989.

  8. Ahmed, T., Cady, G., Story, A.; A Generalized Correlation for Characterizing theHydrocarbon Heavy Fractions.. Paper SPE 14266, presented at the 60th Annual TechnicalConference of the Society of Petroleum Engineers, Las Vegas,September 22–25, 1985.

  9. Ahrendts, J., Baehr, H.D.; The Thermodynamic Properties of Ammonia. VDI-Forsch., Number 596, 1979.

  10. Akasaka, R.; New Fundamental Equations of State with a Common Functional Form for 2,3,3,3-Tetrafluoropropene (R-1234yf) and trans-1,3,3,3-Tetrafluoropropene (R-1234ze(E)). Int. J. Thermophys. 32(6) (2011) 1125-1147, http://dx.doi.org/10.1007/s10765-011-0992-0

  11. Akasaka, R.; Recent trends in the development of Helmholtz energy equations of state and their application to 3,3,3-trifluoroprop-1-ene (R-1243zf). Sci. Tech. Built Env. 22(8) (2016) 1136-1144, http://dx.doi.org/10.1080/23744731.2016.1208000

  12. Akasaka, R.; A Reliable and Useful Method to Determine the Saturation State from Helmholtz Energy Equations of State. J. Thermal Sci. Tech. 3(3) (2008) 442-451, http://dx.doi.org/10.1299/jtst.3.442

  13. Akasaka, R., Fukushima, M., Lemmon, E.W.; A Helmholtz Energy Equation of State for Trifluoroethylene (R-1123). International Refrigeration and Air Conditioning Conference at Purdue, July 11-14, 2016, http://docs.lib.purdue.edu/iracc/1698.

  14. Akasaka, R., Higashi, Y., Akoda, N., Fukuda, S., Lemmon, E.W.; Thermodynamic properties of trifluoroethene (R1123): (p, ρ, T) behavior and fundamental equation of state. Int. J. Refrig. 119 (2020) 457-467, http://dx.doi.org/10.1016/j.ijrefrig.2020.07.011

  15. Akasaka, R., Higashi, Y., Miyara, A., Koyama, S.; A fundamental equation of state for cis-1,3,3,3-tetrafluoropropene (R-1234ze(Z)). Int. J. Refrig. 44 (2014) 168-176, http://dx.doi.org/10.1016/j.ijrefrig.2013.12.018

  16. Akasaka, R., Huber, M.L., Simoni, L.D., Lemmon, E.W.; A Helmholtz Energy Equation of State for trans-1,1,1,4,4,4-Hexafluoro-2-butene [R-1336mzz(E)] and an Auxiliary Extended Corresponding States Model for the Transport Properties. Int. J. Thermophys 44(4) (2023) 50, http://dx.doi.org/10.1007/s10765-022-03143-5

  17. Akasaka, R., Kayukawa, Y.; A fundamental equation of state for trifluoromethyl methyl ether (HFE-143m) and its application to refrigeration cycle analysis. Int. J. Refrig., 35(4) (2012) 1003-1013, http://dx.doi.org/10.1016/j.ijrefrig.2012.01.003

  18. Akasaka, R., Lemmon, E.W.; Fundamental Equations of State for cis-1,3,3,3-Tetrafluoropropene [R-1234ze(Z)] and 3,3,3-Trifluoropropene (R-1243zf). J. Chem. Eng. Data 64(11) (2019) 4679-4691, http://dx.doi.org/10.1021/acs.jced.9b00007

  19. Akasaka, R., Lemmon, E.W.; An International Standard Formulation for trans-1-Chloro-3,3,3-trifluroprop-1-ene [R1233zd(E)] Covering Temperatures from theTriple-Pont Temperature to 450K and Pressuresup to 100 MPa. J. Phys. Chem. Ref. Data 51(2) (2022) 023101, http://dx.doi.org/10.1063/5.0083026

  20. Akasaka, R.; Zhou, Y.; Lemmon, E.W.; Fundamental Equation of State for 1,1,1,3,3-Pentafluoropropane (R-245fa). J. Phys. Chem. Ref. Data 44(1) (2015) 013104, http://dx.doi.org/10.1063/1.4913493

  21. Aleksandrov, I.S., Gerasimov, A.A., Grigor’ev, B.A.; Using Fundamental Equations of State for Calculating the Thermodynamic Properties of Normal Undecane. Thermal Engineering, 58(8) (2011) 691-698, http://dx.doi.org/10.1134/S0040601511080027

  22. Almedeij, J.; Drag Coefficient of Flow around a Sphere: Matching Asymptotically the Wide Trend. Powder Technology 186(3) (2008) 218-223, http://dx.doi.org/10.1016/j.powtec.2007.12.006

  23. Almeida, G.S., Aznar, M., Silva Telles, A.; Uma Nova Forma de Dependência com a Temperatura do Termo Atrativo de Equaçöes de Estado Cúbicas. Cad. Eng. Quim., 8 (1991) 95-123

  24. Ambrose, D.; Correlation and Estimation of Vapor-Liquid Critical Properties: I. Critical Temperatures of Organic Compounds. National Physical Laboratory, Teddington, NPL Rep. Chern. 92, 1978, corrected 1980.

  25. Ambrose, D.; Correlation and Estimation of Vapor-Liquid Critical Properties: II. Critical Pressures and Volumes of Organic Compounds. National Physical Laboratory, Teddington, NPL Rep. 98, 1979

  26. Ambrose, D., Walton, J.; Vapour Pressures up to Their Critical Temperatures of Normal Alkanes and 1-Alkanols. Pure & Appl. Chem. 61(8) 1395-1403 (1989), http://dx.doi.org/10.1351/pac198961081395

  27. Angus, S., Armstrong, B., de Reuck, K.M.; International Thermodynamic Tables of the Fluid State-7: Propylene (Propene). IUPAC Chemical Data Series nº25, Pergamon Press, 1980

  28. Antoine, C.; Tensions des Vapeurs: Nouvelle Relation Entre les Tensions et les Tempé. Compt.Rend. 107:681-684 (1888)

  29. API; Technical Data book: Petroleum Refining 6th Edition.

  30. ASHRAE; Designation and Safety Classification of Refrigerants. Standard 34-2010

  31. Assael, M.J., Assael. J.-A.M., Huber, M.L., Perkins, R.A., Takata, Y.; Correlation of the Thermal Conductivity of Normal and Parahydrogen from the Triple Point to 1000 K and up to 100 MPa. J. Phys. Chem. Ref. Data 40(3) (2011) 033101, http://dx.doi.org/10.1063/1.3606499

  32. Assael, M.J., Bogdanou, I., Mylona, S.K., Huber, M.L. Huber, Perkins, R.A., Vesovic, V.; Reference Correlation of the Thermal Conductivity of n-Heptane from the Triple Point to 600 K and up to 250 MPa. J. Phys. Chem. Ref. Data 42(2) (2013) 023101, http://dx.doi.org/10.1063/1.4794091

  33. Assael, M.J., Koini, I.A., Anoniadis, K.D., Huber, M.L., Abdulagatov, I.M., Perkins, R.A.; Reference Correlation of the Thermal Conductivity of Sulfur Hexafluoride from the Triple Point to 1000 K and up to 150 MPa. J. Phys. Chem. Ref. Data 41(2) (2012) 023104, http://dx.doi.org/10.1063/1.4708620

  34. Assael, M.J., Koutian, A., Huber, M.L., Perkins, R.A.; Reference Correlations of the Thermal Conductivity of Ethene and Propene. J. Phys. Chem. Ref. Data 45(3) (2016) 033104, http://dx.doi.org/10.1063/1.4958984

  35. Assael, M.J., Mihailidou, E., Huber, M.L., Perkins, R.A.; Reference Correlation of the Thermal Conductivity of Benzene from the Triple Point to 725 K and up to 500 MPa. J. Phys. Chem. Ref. Data 41(4) (2012) 043102, http://dx.doi.org/10.1063/1.4755781

  36. Assael, M.J., Monogenidou, S.A., Huber, M.L., Perkins, R.A., Sengers, J.V.; New International Formulation for the Viscosity of Heavy Water. J. Phys. Chem. Ref. Data 50(3) (2021) 033102, http://dx.doi.org/10.1063/5.0048711

  37. Assael, M.J., Mylona, S.K., Huber, M.L., Perkins, R.A.; Reference Correlation of the Thermal Conductivity of Toluene from the Triple Point to 1000 K and up to 1000 MPa. J. Phys. Chem. Ref. Data 41(2) (2012) 023101, http://dx.doi.org/10.1063/1.3700155

  38. Assael, M.J., Mylona, S.K., Tsiglifisi, Ch.A., Huber, M.L., Perkins, R.A.; Reference Correlation of the Thermal Conductivity of n-Hexane from the Triple Point to 600 K and up to 500 MPa. J. Phys. Chem. Ref. Data 42(1) (2013) 013106, http://dx.doi.org/10.1063/1.4793335

  39. Assael, M.J., Papalas, T.B., Huber, M.L.; Reference Correlations for the Viscosity and Thermal Conductivity of n-Undecane. J. Phys. Chem. Ref. Data 46(3) (2017) 033103, http://dx.doi.org/10.1063/1.4996885

  40. Assael, M.J., Sykioti, E.A., Huber, M.L., Perkins, R.A.; Reference Correlation of the Thermal Conductivity of Ethanol from the Triple Point to 600 K and up to 245 MPa. J. Phys. Chem. Ref. Data 42(2) (2013) 023102, http://dx.doi.org/10.1063/1.4797368

  41. Astina, I.M., Budiarso, G., Harrison, R.; New Helmholtz Equation of State for HFO-1234ze(E) with Comprehensive Assessment. Fluid Phase Equilibria 531 (2021) 112921, http://dx.doi.org/10.1016/j.fluid.2020.112921

  42. Astina, I.M., Firmansyah, J.; Thermodynamic Property Model of Wide-Fluid Phase Propane. ITB J.Eng.Sci. 39(1) (2007) 43-65, http://dx.doi.org/10.5614/itbj.eng.sci.2007.39.1.4

  43. Astina, I.M., Sato, H.; A Rational Helmholtz Fundamental Equation of State for Difluoromethane with an Intermolecular Potential Background. Int. J. Thermophys. 24(4) (2003) 963-990, http://dx.doi.org/10.1023/A:1025096716493

  44. Astina, I.M., Sato, H.; A Rational Fundamental Equation of State for Pentafluoroethane with Theoretical and Experimental Bases. Int. J. Thermophys., 25(1) (2004) 113-131, http://dx.doi.org/10.1023/B:IJOT.0000022330.46522.68

  45. Astina, I.M., Sato, H.; A Fundamental Equation of State for 1,1,1,2-tetrafluoroethane with an Intermolecular Potential Energy Background and Relialbe Ideal-Gas Properties. Fluid Phase Equilib., 221 (2004) 103-111, http://dx.doi.org/10.1016/j.fluid.2004.03.004

  46. Astina, I.M., Sato, H.; A Rigorous Thermodynamic Property Model for Fluid-Phase 1,1-Difluoroethane (R-152a). Int. J. Thermophys., 25(6) (2004) 1713-1733, http://dx.doi.org/10.1007/s10765-004-7731-8

  47. ASTM; Annual Book of Standards. ASTM International, West Conshohocken, PA, 2002

  48. ASTM D2161-05; Standard Practice for Conversion of Kinematic Viscosity to Saybolt Universal Viscosity or to Saybolt Furol Viscosity. ASTM International, West Conshohocken, PA 2005, www.astm.org, http://dx.doi.org/10.1520/D2161-05

  49. Avci, A., Karagoz, I.; A Novel Explicit Equation for Friction Factor in Smooth andRough Pipes. J. Fluids Eng 131(6) (2009) 061203, http://dx.doi.org/10.1115/1.3129132

  50. Avgeri, S., Assael, M.J., Huber, M.L., Perkins, R.A; Reference Correlation of the Viscosity of Benzene from the Triple Point to 675K and up to 300MPa. J. Phys. Chem. Ref. Data 43 (2014) 033103, http://dx.doi.org/10.1063/1.4892935

  51. Avgeri, S., Assael, M.J., Huber, M.L., Perkins, R.A.; Reference Correlation of the Viscosity of Toluene from the Triple Point to 675 K and up to 500 MPa. J. Phys. Chem. Ref. Data 44(3) (2015) 033101, http://dx.doi.org/10.1063/1.4926955

  52. Azizi N, Behbahani R, Isazadeh M A.; An efficient correlation for calculating compressibility factor of natural gases. Journal of Natural Gas Chemistry 19 (2010) 642-645, http://dx.doi.org/10.1016/s1003-9953(09)60081-5

  53. Aznar, M., Silva Telles, A.; A Data Bank of Parameters for the Attractive Coefficient of the Peng-Robinson Equation of State. Braz. J. Chem. Eng. 14(1) (1997), http://dx.doi.org/10.1590/S0104-66321997000100003

  54. Baehr, H.D., Tillner-Roth, R.; Thermodynamic Properties of Environmentally Acceptable Refrigerants: Equations of State and Tables for Ammonia, R22, R134a, R152a, and R123. Springer-Verlag, Berlin, 1994., http://dx.doi.org/10.1007/978-3-642-79400-1

  55. Bahadori, A., Mokhatab, S., Towler, B.F.; Rapidly estimating natural gas compressibility factor. J. Nat. Gas Chem. 16 (4) 2007, 349-353., http://dx.doi.org/10.1016/s1003-9953(08)60003-1

  56. Balogun, B., Riesco, N., Vesovic, V.; Reference Correlation of the Viscosity of para-Xylene from the Triple Point to 673K and up to 110 MPa. J. Phys. Chem. Ref. Data 44(1) (2015) 013103, http://dx.doi.org/10.1063/1.4908048

  57. Barati, R., Neyshabouri, S.A.A.S, Ahmadi, G.; Development of Empirical Models with High Accuracy for Estimation of Drag Coefficient of Flow around a Smooth Sphere: An Evolutionary Approach. Powder Technology 257 (2014) 11-19, http://dx.doi.org/10.1016/j.powtec.2014.02.045

  58. Barr, D.I.H.; Solutions of the Colebrook-White functions for resistance to uniform turbulent flows.. Proc Inst Civil Eng 71, 1981, 529-536., http://dx.doi.org/10.1680/iicep.1981.1895

  59. Barreiros, S.F., Calado, J.C.G., Nunes da Ponte, M.; The melting curve of carbon monoxide. J. Chem. Thermodynamics 14 (1982) 1197-1198, http://dx.doi.org/10.1016/0021-9614(82)90044-1

  60. Beckmüller, R., Span, R., Lemmon, E.W., Thol, M.; A Fundamental Equation of State for the Calculation of Themodynamic Properties of n-Octane. J. Phys. Chem. Ref. Data 51 (2022) 043103, http://dx.doi.org/10.1063/5.0104661

  61. Bell, I.H., Jäger, A.; Helmholtz Energy Transformations of Common Cubic Equations of State for Use with Pure Fluids and Mixtures. J. Res. of NIST 121 (2016) 236-263, http://dx.doi.org/10.6028/jres.121.011

  62. Bell, I.H., Wronski, J., Quoilin, S., Lemort, V.; Pure and Pseudo-pure Fluid Thermophysical PropertyEvaluation and the Open-Source Thermophysical PropertyLibrary CoolProp. Ind. Eng. Chem. Res. 53(6) (2014) 2498-2508, http://dx.doi.org/10.1021/ie4033999

  63. Bender, E.; Equation of state of normal hydrogen in the range 18 to 700 K and 1 to 500 bar. VDI-Forschungsheft, no. 609, 1982, p. 15-20

  64. Bergman, D.F., Tek, M.R., Katz, D.L.; Retrograde Condensation in Natural Gas Pipelines. Project PR 2-29 of Pipelines Research Committee, AGA, January 1977

  65. Bergman, T.L., Lavine, A.S., Incropera, F.P., DeWitt, D.P.; Introduction to Heat Transfer. 6th Ed.. Wiley, 2011.

  66. Betken, B., Beckmüller, R., Javed, M.A., Baumhögger, E., Span, R. Vrabec, J., Thol, M.; Thermodynamic properties fo 1-hexene - Measurements and Modeling. J. Chem. Thermo., 176 (2023) 106881, http://dx.doi.org/10.1016/j.jct.2022.106881

  67. Bhattacharjee, J.K., Ferrell, R.A., Basu, R.S., Sengers, J.V.; Crossover function for the critical viscosity of a classical fluid. Physical Review A 24(3) (1981) 1469-1475, http://dx.doi.org/10.1103/PhysRevA.24.1469

  68. Bhirud, V.L.; Saturated Liquid Densities of Normal Fluids. AIChE Journal 24(6) (1978) 1127-1131, http://dx.doi.org/10.1002/aic.690240630

  69. Blackham, T.M., Lemmon, E.W.; to be published in Int. J. Thermophys., 2011.

  70. Boston, J.F., Mathias, P.M.; Phase Equilibria in a Third-Generation Process Simulator. Presented at: ‘Phase Equilibria and Fluid Properties in the Chemical Industries’, Berlin, March 17-21, 1980.

  71. Brill, J.P., Beggs, H.D.; Two-Phase Flow in Pipes. University of Tulsa, INTERCOMP Course, The Hague, 1974

  72. Brkić, D.; An Explicit Approximation of Colebrook’s equation for fluidflow friction factor. Petroleum Science and Technology 29 (15): 1596–1602. , http://dx.doi.org/10.1080/10916461003620453

  73. Brock, J.R., Bird, R.B.; Surface Tension and the Principle of Corresponding States. AIChE Journal 1(2) (1955) 174-177, http://dx.doi.org/10.1002/aic.690010208

  74. Brokaw, R.S.; Predicting Transport Properties of Dilute Gases. I&EC Process Design and Development 8(22) (1969) 240-253, http://dx.doi.org/10.1021/i260030a015

  75. Brown, P.P., Lawler, D.F.; Sphere Drag and Settling Velocity Revisited. J. Env. Eng. 129(3) (2003) 222-231, http://dx.doi.org/10.1061/(ASCE)0733-9372(2003)129:3(222)

  76. Brulé, M.R., Starling, K.E.; Thermophysical Properties of Complex Systems: Applications of Multiproperty Analysis. Ind. Eng. Chem. Process Dev. 23 (1984) 833-845, http://dx.doi.org/10.1021/i200027a035

  77. Burnett, R.R.; Calculator gives compressibility factors. Oil & Gas Journal, June 11, 1979, pp. 70-74.

  78. Buzzelli, D.; Calculating friction in one step. Machine Design, 80 (2008), 54–55.

  79. Bücker, D., Wagner, W.; A Reference Equation of State for the Thermodynamic Properties of Ethane for Temperatures from the Melting Line to 675 K and Pressures up to 900 MPa. J. Phys. Chem. Ref. Data 35(1) (2006) 205-266, http://dx.doi.org/10.1063/1.1859286

  80. Bücker, D., Wagner, W.; Reference Equations of State for the Thermodynamic Properties of Fluid Phase n-Butane and Isobutane. J. Phys. Chem. Ref. Data 35(2) (2006) 929-1019, http://dx.doi.org/10.1063/1.1901687

  81. Calvert, S., Lundgren, D., Mehta, D.S.; Venturi Scrubber Performance. J. Air Pollution Control Assoc., 22(7) (1972) 529-532, http://dx.doi.org/10.1080/00022470.1972.10469674

  82. Cao, F.L., Meng, X.Y., Wu, J.T., Vesovic, V.; Reference Correlation of the Viscosity of ortho-Xylene from 273 to 673 K and up to 110 MPa. J. Phys. Chem. Ref. Data 45(2) (2016) 023102, http://dx.doi.org/10.1063/1.4945663

  83. Cao, F.L., Meng, X.Y., Wu, J.T., Vesovic, V.; Reference Correlation of the Viscosity of meta-Xylene from 273 to 673 K and up to 110 MPa. J. Phys. Chem. Ref. Data 45(1) (2016) 013103, http://dx.doi.org/10.1063/1.4941241

  84. Cavett, R.H.; Physical data for distillation calculations, vapor-liquidequilibrium.. Proceedings of the 27th Meeting, API, San Francisco, Issue 3,351-366.

  85. Ceylan, K., Altunbaş, A., Kelbaliyev, G.; A New Model for Estimation of Drag Force in the Flow of Newtonian Fluids around Rigid or Deformable Particles. Powder Technology 119 (2001) 250-56, http://dx.doi.org/10.1016/s0032-5910(01)00261-3

  86. Chang, C.H., Zhao, X.M.; A New Generalized Equation for Predicting Volume of Compressed Liquids. Fluid Phase Equilibria, 58 (1990) 231-238, http://dx.doi.org/10.1016/0378-3812(90)85134-v

  87. Chankalani, A., Mae’soumi, A., Sameni, A.; An Intelligent Approach for Optimal Prediction of Gas Deviation Factor Using Particle Swarm Optimization and Genetic Algorithm. Journal of Natural Gas Science and Engineering 14(2013) 132-143, http://dx.doi.org/10.1016/j.jngse.2013.06.002

  88. Chao, K.C., Seader, J.D.; A General Correlation of Vapor-Liquid Equilibria in Hydrocarbon Mixtures. AIChE J. 7(4) (1961) 598-605, http://dx.doi.org/10.1002/aic.690070414

  89. Chen, H.J.; An Explicit Equation for Friction Factor in Pipe. Ind. Eng. Chem. Fundam. 18(3) (1979) 296-297, http://dx.doi.org/10.1021/i160071a019

  90. Chen, H.J.; An Exact Solution to the Colebrook Equation. Chem. Eng. 94(2) (1987) 196-198

  91. Cheng, N.-S.; Comparison of Formulas for Drag Coefficient and Settling Velocity of Spherical Particles. Powder Technology 189(3) (2009) 395-398, http://dx.doi.org/10.1016/j.powtec.2008.07.006

  92. Chueh, P.L., Prausnitz, J.M.; Vapor-Liquid Equilibria at High Pressures: Calculation of Partial Molar Volumes in Nonpolar Liquid Mixtures. AIChE Journal 13(6) (1967) 1099-1107, http://dx.doi.org/10.1002/aic.690130612

  93. Chueh, P.L., Prausnitz, J.M.; Vapor-Liquid Equilibria at High Pressures: Calculation of Critical Temperatures, Volumes and Pressures of Nonpolar Mixtures. AIChE Journal 13(6) (1967) 1107-1113, http://dx.doi.org/10.1002/aic.690130613

  94. Chung, T.H., Ajlan, M., Lee, L.L., Starling, K.E.; Generalized Multiparameter Correlation for Nonpolar and Polar Fluid Transport Properties. Ind. Eng. Chem. Res. 27(4) (1988) 671-679, http://dx.doi.org/10.1021/ie00076a024

  95. Chung, T.H., Lee, L.L., Starling, K.E.; Applications of Kinetic Gas Theories and Multiparameter Correlation for Prediction of Dilute Gas Viscosity and Thermal Conductivity. Ind. Eng. Chem. Fundam. 23(1) (1984) 8-13, http://dx.doi.org/10.1021/i100013a002

  96. Churchill, S.W.; Friction-factor equation spans all fluid-flow regimes. Chem. Eng. 84 (1977) 94-95

  97. Churchill, S.W., Chu, H.H.S.; Correlating Equations for Laminar and Turbulent Free Convection from a Vertical Plate. Int. J. Heat Mass Transfer 18(11) (1975) 1323-29, http://dx.doi.org/10.1016/0017-9310(75)90243-4

  98. Clift, R., Grace, J.R., Weber, M.E.; Bubbles, Drops, and Particles. Academic Press, 1978.

  99. Colebrook, C.F., White, C.M.; Experiments with Fluid Friction in Roughened Pipes. Proc. R. Soc. Lond. A 161 (1937) 367-381., http://dx.doi.org/10.1098/rspa.1937.0150

  100. Colonna, P., Nannan, N.R., Guardone, A.; Multiparameter equations of state for siloxanes: [(CH3)3-Si-O1/2]2-[O-Si-(CH3)2]i=1,…,3, and [O-Si-(CH3)2]6. Fluid Phase Equilibria 263:115-130, 2008, http://dx.doi.org/10.1016/j.fluid.2007.10.001

  101. Colonna, P., Nannan, N.R., Guardone, A., Lemmon, E.W.; Multiparameter Equations of State for Selected Siloxanes. Fluid Phase Equilibria, 244 (2006) 193-211, http://dx.doi.org/10.1016/j.fluid.2006.04.015

  102. Concha, F., Barrientos, A.; Settling Velocities of Particulate Systems, 3. Power Series Expansion for the Drag Coefficient of A Sphere and Prediction of the Settling Velocity. Int. J. Miner. Process. 9 (1982) 167-172, http://dx.doi.org/10.1016/0301-7516(82)90025-4

  103. Constantinou, L., Gani, R.; New Group Controbution Method for Estimating Properties of Pure Compounds. AIChE J. 40(10) (1994) 1697-1710, http://dx.doi.org/10.1002/aic.690401011

  104. Constantinou, L., Gani, R., O’Connell, J.P.; Estimation of the Acentric Factor and the Liquid Molar Volume at 298K Using a New Group Contribution Method. Fluid Phase Equilibria 103 (1995) 11-22, http://dx.doi.org/10.1016/0378-3812(94)02593-p

  105. Coquelet, C., Chapoy, A., Richon, D.; Development of a New Alpha Function for the Peng-Robinson Equation of State: Comparative Study of Alpha Function Models for Pure Gases (Natural Gas Components) and Water-Gas Systems. Int. J. Thermophys. 25(1) (2004) 133-158, http://dx.doi.org/10.1023/b_ijot.0000022331.46865.2f

  106. Crane; Flow of Fluids Through Valves, Fittings, and Pipe. Crane CO, 1982

  107. Darby, R., Chhabra, R.P.; Chemical Engineering Fluid Mechanics, 3rd Edition. CRC Press, 2017

  108. Datchi, F., Loubeyre, P., LeToullec, R.; Extended and accuracy determination of the melting curves of argon, helium, ice (H2O), and hydrogen (H2). Physical Review B, 61(10) (2000) 6535-6546, http://dx.doi.org/10.1103/PhysRevB.61.6535

  109. Daubert, T.E.; Petroleum Fraction Distillation Interconversion. Hydrocarbon Processing 73(9) (1994) 75-78

  110. de Reuck, K.M.; International thermodynamic tables of the fluid state: Vol. 11 - fluorine. Pergamon Press, Oxford, 1990.

  111. de Reuck, K.M., Craven, R.J.B.; Methanol, International Thermodynamic Tables of the Fluid State - 12. IUPAC, Blackwell Scientific Publications, London, 1993.

  112. de Reuck, K.M., Craven, R.J.B., Cole, W.A.; Report on the Development of an Equation of State for Sulphur Hexafluoride. IUPAC Thermodynamic Tables Project Centre, 1991.

  113. de Visscher, A.; Air Dispersion Modeling: Foundations and Applications. John Wiley & Sons, 2014

  114. de Vries, B., Tillner-Roth, R., Baehr, H.D.; Thermodynamic Properties of HCFC 124,. 19th International Congress of Refrigeration, The Hague, The Netherlands, IIR, IVa:582-589, 1995

  115. Dean, D.E., Stiel, L.I.; The Viscosity of Nonpolar Gas Mixtures at Moderate and High Pressures. AIChE Journal 11(3) (1965) 526-532 , http://dx.doi.org/10.1002/aic.690110330

  116. Di Nicola, G., Ciarrocchi, E., Coccia, G., Pierantozzi, M.; Correlations of Thermal Conductivity for Liquid Refrigerants at Atmospheric Pressure or near Saturation. International Journal of Refrigeration, 2014, http://dx.doi.org/10.1016/j.ijrefrig.2014.06.003

  117. Dillon, H.E., Penoncello, S.G.; A Fundamental Equation for Calculation of the Thermodynamic Properties of Ethanol. Int. J. Thermophys., 25(2) (2004) 321-335, http://dx.doi.org/10.1023/B:IJOT.0000028470.49774.14

  118. Dranchuk, P.M., Abu-Kassem, J.H.; Calculate of Z factors for Natural Gases Using Equations of State. Journal of Canadian Petroleum Technology (July–September 1975): 34-36, http://dx.doi.org/10.2118/75-03-03

  119. Dranchuk, P.M., Purvis, R.A., Robinson, D.B.; Computer Calculations of Natural Gas Compressibility Factors Using the Standing and Katz Correlation. Technical Series, no. IP 74–008. Institute of Petroleum, Alberta, Canada, 1974., http://dx.doi.org/10.2118/73-112

  120. Dranchuk, P.M., Quon, D.; A General Solution of the Equations Describing Steady StateTurbulent Compressible Flow in Circular Conduits. Journal of Canadian Petroleum Technology 3(2):60-65, 1964, http://dx.doi.org/10.2118/64-02-04

  121. Dymond, J.H., Marsh, K.N., Wilhoit, R.C., Wong, K.C., Frenkel, M.; Virial Coefficients of Pure Gases (Landolt-Börnstein - Group IV Physical Chemistry 21A). Springer-Verlag, http://dx.doi.org/10.1007/10693952_16

  122. Dymond, J.H., Marsh, K.N., Wilhoit, R.C., Wong, K.C., Frenkel, M.; Virial Coefficients of Mixtures (Landolt-Börnstein - Group IV Physical Chemistry 21B). Springer-Verlag, http://dx.doi.org/10.1007/10754889

  123. Eck, B.; Technische Stromungslehre. Springer, New York, 1973.

  124. Edmister, W.C.; Applied Hydrocarbon Thermodynamics, Part 4, CompressibilityFactors and Equations of State. Petroleum Refiner. 37 (April, 1958), 173–179

  125. Edmister, W.C., Okamoto, K.K.; Applied Hydrocarbon Thermodynamics, Part 13: Equilibrium Flash Vaporization Correlations for Heavy Oils Under Subatmospheric Pressures. Petroleum Refiner 38(9) (1959) 271-288

  126. Edwards, T.J., Newman, J., Prausnitz, J.M.; Thermodynamics of Aqueous Solutions Containing Volatile Weak Electrolytes. AIChE Journal 21(2) (1975) 248-259, http://dx.doi.org/10.1002/aic.690210205

  127. Eisenbach, T., Scholz, C., Span, R., Cristancho, D., Lemmon, E.W., Thol, M.; Speed-of-Sound Measurements and a Fundamental Equation of State for Propylene Glycol. J. Phys. Chem. Ref. Data 50(2) (2021) 023105, http://dx.doi.org/10.1063/5.0050021

  128. Elsharkawy, A.M.; Efficient methods for calculations of compressibility, density and viscosity of natural gases. Fluid Phase Equilibria 218:1 (2004) 1-13, http://dx.doi.org/10.1016/j.fluid.2003.02.003

  129. Ely, J.F.; An Enskog Correction for Size and Mass Difference Effects in Mixture Viscosity Prediction. J. Res. Natl. Bur. Stand. 86(6) (1981) 597-604, http://dx.doi.org/10.6028/jres.086.028

  130. Ely, J.F., Hanley, H.J.M.; A Computer Program for the Prediction of Viscosity and Thermal Condcutivity in Hydrocarbon Mixtures. NBS Technical Note 1039 (1981)

  131. Ely, J.F., Magee, J.W., Haynes, W.M.; Thermophysical properties for special high CO2 content mixtures. Research Report RR-110, Gas Processors Association, Tulsa, OK, 1987.

  132. Estela-Uribe, J.F., Trusler, J.P.M.; Extended corresponding states model for fluids and fluidmixtures I. Shape factor model for pure fluids. Fluid Phase Equilibria 204 (2003) 15-40, http://dx.doi.org/10.1016/s0378-3812(02)00190-5

  133. Fang, X,, Xu, Y., Zhou, Z.; New correlations of single-phase friction factor forturbulent pipe flow and evaluation of existing single-phasefriction factor correlations.. Nucl. Eng. Des. 241 (2011) 897-902, http://dx.doi.org/10.1016/j.nucengdes.2010.12.019

  134. Fenghour, A., Wakeham, W.A., Vesovic, V.; The Viscosity of Carbon Dioxide. J. Phys. Chem. Ref. Data 27(1) (1998) 31-44, http://dx.doi.org/10.1063/1.556013

  135. Fenghour, A., Wakeham, W.A., Vesovic, V., Watson, J.T.R., Millat, J., Vogel, E.; The Viscosity of Ammonia. J. Phys. Chem. Ref. Data 24(5) (1995) 1649-1667, http://dx.doi.org/10.1063/1.555961

  136. Flemmer, R.L.C., Banks, C.L.; On the Drag Coefficient of a Sphere. Powder Technology 48(3) (1986) 217-221., http://dx.doi.org/10.1016/0032-5910(86)80044-4

  137. Friend, D.G., Ely, J.F., Ingham, H.; Thermophysical Properties of Methane. J. Phys. Chem. Ref. Data 18(2) (1989) 583-638, http://dx.doi.org/10.1063/1.555828

  138. Friend, D.G., Ingham, H., Ely, J.F.; Thermophysical Properties of Ethane. J. Phys. Chem. Ref. Data 20(2) (1991) 275-347, http://dx.doi.org/10.1063/1.555881

  139. Friend, D.G., Ingham, H., Ely, J.F.; Thermophysical Properties of Ethane. J. Phys. Chem. Ref. Data 20, 275 (1991), http://dx.doi.org/10.1063/1.555881

  140. Gao, K., Köster, A., Thol, M., Wu, J., Lemmon, E.W.; Equations of State for the Thermodynamic Properties of n-Perfluorobutane, n-Perfluoropentane, and n-Perfluerohexane. Ind. Eng. Chem. Res. 60(47) (2021) 17207-17227, http://dx.doi.org/10.1021/acs.iecr.1c02969

  141. Gao, K., Wu, J., Bell, I.H., Harvey, A.H., Lemmon E.W.; A Reference Equation of State with an Associating Term for the Thermodynamic Properties of Ammonia. J. Phys. Chem. Ref. Data 52 (2023) 013102, http://dx.doi.org/10.1063/5.0128269

  142. Gao, K., Wu, J., Lemmon, E.W.; Equations of State for the Thermodynamic Properties of Three Hexane Isomers: 3-Methylpantane, 2,2-Dimethylbutane, and 2,3-Dimethylbutane. J. Phys. Chem. Ref. Data 50(3) (2021) 033103, http://dx.doi.org/10.1063/1.5093644

  143. Gao, K., Wu, J., Zhang, P., Lemmon, E.W.; A Helmholtz Energy Equation of State for Sulfur Dioxide. J. Chem. Eng. Data, 61(6) (2016) 2859-2872, http://dx.doi.org/10.1021/acs.jced.6b00195

  144. Gasem, K.A.M., Gao, W., Pan, R.L., Robinson Jr, R.L.; A modified temperature dependence for the Peng-Robinson equation of state. Fluid Phase Equilibria 181 (2001) 113-125, http://dx.doi.org/10.1016/s0378-3812(01)00488-5

  145. Gedanitz, H., Davila, M.J., Lemmon, E.W.; Speed of Sound Measurements and a Fundamental Equation of State for Cyclopentane. J. Chem. Eng. Data, 60(5) (2015) 1331-1337, http://dx.doi.org/10.1021/je5010164

  146. Geller, V.Z., Nemzer, B.V., Cheremnykh, U.V.; Thermal Conductivity of the Refrigerant Mixtures R404A, R407C, R410A and R507A. Int. J. Termophysics 22(4) (2001) 1035-1043, http://dx.doi.org/10.1023/a_1010691504352

  147. Geller, V.Z., Nemzer, B.V., Cheremnykh, U.V.; Thermal Conductivity of the Refrigerant Mixtures R404A, R407C, R410A and R507A. Int. J. Thermophysics 22(4) (2001) 1035-1043, http://dx.doi.org/10.1023/a_1010691504352

  148. Georgeton, G.K., Smith, R.L.Jr., Teja, A.S; Application of Cubic Equations of State to Polar Fluids and Fluid Mixtures. in Chao, K.C., Robinson, R.L. Equations of State. Theories and Applications, 1985, ACS Svmposium 300, pp. 434-451

  149. Ghanbari, A., Farshad, F., Rieke, H.H.; Newly developed friction factor correlation for pipe flow and flow assurance. J Chem Eng Mat Sci 2 (2011), 83-86.

  150. Gharagheizi, F., Eslamimanesh, A., Sattari, M., Mohammadi, A.H., Richon, D.; Corresponding States Method for Determination of the Viscosity of Gases at Atmospheric Pressure. I&EC Research 51(7) (2012) 3179-3185, http://dx.doi.org/10.1021/ie202591f

  151. Gharagheizi, F., Ilani-Kashkouli, P., Sattari, M., Mohammadi, A.H., Ramjugernath, D., Richon, D.; Development of a General Model for Determination of Thermal Conductivity of Liquid Chemical Compounds at Atmospheric Pressure. AIChE Journal 59 (2013) 1702-1708, http://dx.doi.org/10.1002/aic.13938

  152. Goossens, A.G.; Prediction of the Hydrogen Content of Petroleum Fractions. Ind. Eng. Chem. Res. 36(6) (1997) 2500-2504, http://dx.doi.org/10.1021/ie960772x

  153. Goossens, A.G.; Prediction of Molecular Weight of Petroleum Fractions. Ind. Eng. Chem. Res. 35(3) (1996) 985-988, http://dx.doi.org/10.1021/ie950484l

  154. Gopal, V.N.; Gas Z-Factor Equations Developed for Computer. Oil and Gas J. (Aug. 8, 1977) 58-60

  155. Goudar, C.T., Sonnad J.R.; Comparison of the iterative approximations of the Colebrook-White equation. Hydrocarb. Process. 87 (2008) 79-83

  156. Graboski, M.S., Daubert, T.E.; A Modified Soave Equation of State for Phase Equilibrium Calculations. 1. Hydrocarbon Systems. Ind. Eng. Chem. Process Des. Dev. 17(4) (1978) 443-448, http://dx.doi.org/10.1021/i260068a009

  157. Graboski, M.S., Daubert, T.E.; A Modified Soave Equation of State for Phase Equilibrium Calculations. 2. Systems Containing CO₂, H₂S, N₂ and CO. Ind. Eng. Chem. Process Des. Dev. 17(4) (1978) 448-454, http://dx.doi.org/10.1021/i260068a010

  158. Graboski, M.S., Daubert, T.E.; A Modified Soave Equation of State for Phase Equilibrium Calculations. 3. Systems Containing Hydrogen. Ind. Eng. Chem. Process Des. Dev. 18(2) (1979) 300-306, http://dx.doi.org/10.1021/i260070a022

  159. Grayson, H.G., Streed, C.W.; Vapor-Liquid Equilibria for High Temperature, High Pressure Hydrogen-Hydrocarbon Systems. 6th World Petroleum Congress, Frankfurt am Main, Germany, 19-26 June (1963) 169-181

  160. Guder, C., Wagner, W.; A Reference Equation of State for the Thermodynamic Properties of Sulfur Hexafluoride (SF6) for Temperatures from the Melting Line to 625 K and Pressures up to 150 MPa. J. Phys. Chem. Ref. Data 38(1) (2009) 33-94, http://dx.doi.org/10.1063/1.3037344

  161. Gunn, R.D., Yamada, T.; A Corresponding States Correlation of Saturated Liquid Volumes. AIChE Journal 17(6) (1971) 1341-1345, http://dx.doi.org/10.1002/aic.690170613

  162. Haaland, S.E.; Simple and explicit formulas for the friction factor inturbulent flow. J. Fluids Eng., 105(1) (1983) 89-90., http://dx.doi.org/10.1115/1.3240948

  163. Haider, A., Levenspiel, O.; Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles. Powder Technology 58(1) (1989) 63-70, http://dx.doi.org/10.1016/0032-5910(89)80008-7

  164. Hakim, D.I., Steinberg, D., Stiel, L.I.; Generalized Relationship for the Surface Tension of Polar Fluids. I&EC Fundamentals 10(1) (1971) 174-75., http://dx.doi.org/10.1021/i160037a032

  165. Hall, K.R., Iglesias-Silva, G.A.; Improved equations for the StandingeKatz tables. Hydrocarb. Process 86 (4), 2007. 107-110

  166. Hall, K.R., Yarborough, L.; A New Equation of State for Z-factor Calculations. Oil and Gas Journal (June 18, 1973): 82–92.

  167. Hall, K.R., Yarborough, L.; New Simple Correlation for Predicting Critical Volume. Chemical Engineering (November 1971): 76

  168. Han, M.S., Starling, K.E.; Thermo Data Refined for LPG. Part 14. Mixtures. Hydrocarbon Processing 51(5) (1972) 129

  169. Hands, B.A., Arp, V.D.; A Correlation of Thermal Conductivity Data for Helium. Cryogenics, 21(12) (1981) 697-703, http://dx.doi.org/10.1016/0011-2275(81)90211-3

  170. Hankinson, R.W., Thomson, G.H.; A New Correlation for Saturated Densities of Liquids and Their Mixtures. AIChE Journal 25(4) (1979) 653-663, http://dx.doi.org/10.1002/aic.690250412

  171. Hanley H.J.M., McCarty, R.D., Haynes, W.M.; The Viscosity and Thermal Conductivity Coefficient for Dense Gaseous and Liquid Argon, Krypton, Xenon, Nitrogen and Oxigen. J. Phys. Chem. Ref. Data 3(4) (1974) 979-1018, http://dx.doi.org/10.1063/1.3253152

  172. Harvey, A.H.; On the Melting Curve of Sulfur Hexafluoride. J. Phys. Chem. Ref. Data 46(4) (2017) 043102, http://dx.doi.org/10.1063/1.5005537

  173. Harvey, A.H., Huang, P.H.; First-Principles Calculation of the Air-Water Second Virial Coefficient. Int. J. Thermophisics 28(2) (2007) 556-565, http://dx.doi.org/10.1007/s10765-007-0197-8

  174. Harvey, A.H., Lemmon, E.W.; Method for Estimating the Dielectric Constant of Natural Gas Mixtures . Int. J. Thermophys. 26(1) (2005) 31-46, http://dx.doi.org/10.1007/s10765-005-2351-5

  175. Haynes, W.M.; Thermophysical Properties of HCFC Alternatives. NIST, Boulder, Colorado, Final Report for ARTI MCLR Project Number 660-50800, 1996. Pag. A-82

  176. Heidaryan E, Moghadasi J, Rahimi M.; New correlations to predict natural gas viscosity and compressibility factor.. Journal of Petroleum Science and Engineering 73 (2010):67-72, http://dx.doi.org/10.1016/j.petrol.2010.05.008

  177. Heidaryan, E., Salarabadi, A., Moghadasi, J.; A novel correlation approach for prediction of natural gas compressibility factor.. J. Nat. Gas Chem. 19 (2) 2010, 189–192., http://dx.doi.org/10.1016/s1003-9953(09)60050-5

  178. Henley, E.J., Seader, J.D.; Equilibrium-Stage Separation Operations in Chemical Engineering. John Wiley & Sons, 1981

  179. Herrig, S., Thol, M., Harvey, A.H., Lemmon, E.W.; A Reference Equation of State for Heavy Water. J. Phys. Chem. Ref. Data 47(4) (2018) 043102, http://dx.doi.org/10.1063/1.5053993

  180. Herrmann, S., Hellmann, R., Vogel, E.; Update: Reference Correlation for the Viscosity of Ethane [J. Phys. Chem. Ref. Data 44, 043101 (2015)]. J. Phys. Chem. Ref. Data 44(4) (2015) 043101, http://dx.doi.org/10.1063/1.4930838

  181. Herrmann, S., Kretzschmar, H.-J., Gatley, D.P.; Thermodynamic Properties of Real Moist Air, Dry Air, SteamWater, and Ice. ASHRAE RP-1485

  182. Herrmann, S., Vogel, E.; New Formulation for the Viscosity of n-Butane. J. Phys. Chem. Ref. Data 47(1) (2018) 013104, http://dx.doi.org/10.1063/1.5020802

  183. Herrmann, S., Vogel, E.; New Formulation for the Viscosity of Isobutane. J. Phys. Chem. Ref. Data 47(4) (2018) 043103, http://dx.doi.org/10.1063/1.5057413

  184. Hesketh, H.E.; Fine Particle Collection Efficiency Related to Pressure Drop, Scrubbant and Particle Properties, and Contact Mechanism. J. Air Pollution Control Assoc., 24(10) (1974) 939-942, http://dx.doi.org/10.1080/00022470.1974.10469992

  185. Hill, P.G., MacMillan, R.D.C., Lee, V.; A Fundamental Equation of State for Heavy Water. J. Phys. Chem. Ref. Data 11, 1 (1982), http://dx.doi.org/10.1063/1.555661

  186. Holland, P.M., Eaton, B.E., Hanley, H.J.M.; A Correlation of the Viscosity and Thermal Conductivity Data of Gaseous and Liquid Ethylene. J. Phys. Chem. Ref. Data 12(4) (1983) 917-932, http://dx.doi.org/10.1063/1.555701

  187. Horstmann, S., Jabloniec, A., Krafczyk, J., Fischer, K., Gmehling, J.; PSRK group contribution equation of state: comprehensive revision and extension IV, including critical constants and α-function parameters for 1000 components. Fluid Phase Equilibria 227 (2005) 157-164, http://dx.doi.org/10.1016/j.fluid.2004.11.002

  188. Hougen, O.A., Watson, K.M., Ragatz, R.A.; Chemical Process Principles, 2nd ed.. New York: Wiley, 1959, p. 577.

  189. Huber, M.L.; Models for Viscosity, Thermal Conductivity, and Surface Tension of Selected Pure Fluids as Implemented in REFPROP v10.0. NISTIR 8209, http://dx.doi.org/10.6028/NIST.IR.8209

  190. Huber, M.L., Assael, M.J.; Correlation for the Viscosity of 2,3,3,3-tetrafluoroprop-1-ene (R1234yf) and trans-1,3,3,3-tetrafluropropene (R1234ze(E)). Int. J. Refrigeration 71 (2016) 39-45, http://dx.doi.org/10.1016/j.ijrefrig.2016.08.007

  191. Huber, M.L., Ely, J.F.; An Equation of State Formulation of the Thermodynamic Properties of R134a (1,1,1,2-Tetrafluoroethane). Int. J. Refrig. 15(6) (1992) 393-400, http://dx.doi.org/10.1016/0140-7007(92)90024-o

  192. Huber, M.L., Laesecke, A.; Correlation for the Viscosity of Pentafluoroethane (R125) from the Triple Point to 500 K at Pressures up to 60 MPa. Ind. Eng. Chem. Res. 45(12) (2006) 4447-4453, http://dx.doi.org/10.1021/ie051367l

  193. Huber, M.L., Laesecke, A. Xiang, H.W.; Viscosity correlations for minor constituent fluids in natural gas: n-octane, n-nonane and n-decane. Fluid Phase Equilibria 224 (2004) 263-270, http://dx.doi.org/10.1016/j.fluid.2004.07.012

  194. Huber, M.L., Laesecke, A., Perkins, R.A.; Transport Properties of n-Dodecane. Energy & Fuels 18(4) (2004) 968-975., http://dx.doi.org/10.1021/ef034109e

  195. Huber, M.L., Laesecke, A., Perkins, R.A.; Model for the Viscosity and Thermal Conductivity of Refrigerants, Including a New Correlation for the Viscosity of R134a. Ind. Eng. Chem. Res., 42(13) (2003) 3163-3178, http://dx.doi.org/10.1021/ie0300880

  196. Huber, M.L., Lemmon, E.W., Bell, I.H., McLinden, M.O.; The NIST REFPROP Database for Highly Accurate Properties of Industrially Importants Fluids. Ind. Eng. Chem. Res. 61(42) (2022) 15449-15472, http://dx.doi.org/10.1021/acs.iecr.2c01427

  197. Huber, M.L., Lemmon, E.W., Kazakov, A., Ott, L.S., Bruno, T.J.; Model for the Thermodynamic Properties of a Biodiesel Fuel. Energy Fuels, 23 (7) (2009) 3790–3797, http://dx.doi.org/10.1021/ef900159g

  198. Huber, M.L., McLinden, M.O.; Thermodynamic Properties of R134a (1,1,1,2-tetrafluoroethane). International Refrigeration and Air Condictioning Conference, Paper 184, pag. 453-462, 1992.

  199. Huber, M.L., Perkins, R.A.; Thermal conductivity correlations for minor constituent fluids in natural gas: n-octane, n-nonane and n-decane. Fluid Phase Equilibria 227 (2005) 47-55, http://dx.doi.org/10.1016/j.fluid.2004.10.031

  200. Huber, M.L., Perkins, R.A., Friend, D.G., Sengers, J.V., Assael, M.J., Metaxa, I.N., Miyagawa, K., Hellmann, R., Vogel, E.; New International Formulation for the ThermalConductivity of H20. J. Phys. Chem. Ref. Data 41(3) (2012) 033102, http://dx.doi.org/10.1063/1.4738955

  201. Huber, M.L., Perkins, R.A., Lasecke, A., Friend, D.G., Sengers, J.V., Assael, M.J., Metaxa, I.N.,Vogel, E., Mareš, R., Miyagawa, K.; New International Formulation for the Viscosityof H2O. J. Phys. Chem. Ref. Data 38(2) (2009) 101-125, http://dx.doi.org/10.1063/1.3088050

  202. Huber, M.L., Sykioti, E.A., Assael, M.J., Perkins, R.A.; Reference Correlation of the Thermal Conductivity of Carbon Dioxide from the Triple Point to 1100 K and up to 200 MPa. J. Phys. Chem. Ref. Data 45(1) (2016) 013102, http://dx.doi.org/10.1063/1.4940892

  203. Hurst, J.E., Harrison, B.K.; Estimation of Liquid and Solid Heat Capacities Using a Modified Kopp’s Rule. Chem. Eng. Comm. 112 (1992) 21-30, http://dx.doi.org/10.1080/00986449208935989

  204. IAPWS; Revised Release on the Surface Tension of Ordynary Water Substance. 2014

  205. IAPWS; Release on the Values of Temperature, Pressure and Density of Ordynary and Heavy Water Substances at their Respectives Critical Points. 1992

  206. IAPWS; Revised Release on Viscosity and Thermal Conductivity of Heavy Water Substance. 2007

  207. IAPWS; Release on Surface Tension of Heavy Water Substance. 1994

  208. IAPWS; Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. 2006

  209. IAPWS; Revised Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam. 2012

  210. IAPWS; Release on the Static Dielectric Constant of Ordinary WaterSubstance for Temperatures from 238 K to 873 K and Pressures up to 1000 MPa. 1997

  211. IAPWS; Release on the Refractive Index of Ordinary Water Substance as a Function of Wavelength, Temperature and Pressure. 1997

  212. IAPWS; Revised Release on the Equation of State 2006 for H2O Ice Ih. 2009

  213. IAPWS; Release on the Ionization Constant of H2O. 2019

  214. IAPWS; Release on the IAPWS Formulation 2008 for the Viscosity of Ordinary Water Substance. 2008

  215. IAPWS; Release on the IAPWS Formulation 2008 for the Thermodynamic Properties of Seawater. 2008

  216. IAPWS; Revised Release on the Pressure along the Melting and Sublimation Curves of Ordinary Water Substance. 2011

  217. IAPWS; Release on the IAPWS Formulation 2011 for the Thermal Conductivity of Ordinary Water Substance. 2011

  218. IAPWS; Release on the IAPWS Formulation 2017 for the Thermodynamic Properties of Heavy Water. 2017

  219. IAPWS; Revised Supplementary Release on Saturation Properties of Ordinary Water Substance. 1992

  220. IAPWS; Revised Supplementary Release on Backward Equations for Pressure as a Function of Enthalpy and Entropy p(h,s) for Regions 1 and 2 of the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam. 2014

  221. IAPWS; Revised Supplementary Release on Backward Equations for the Functions T(p,h), v(p,h), and T(p,s), v(p,s) for Region 3 of the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam. 2014

  222. IAPWS; Revised Supplementary Release on Backward Equations p(h,s) for Region 3, Equations as a Function of h and s for the Region Boundaries, and an Equation Tsat(h,s) for Region 4 of the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam. 2014

  223. IAPWS; Revised Supplementary Release on Backward Equations for Specific Volume as a Function of Pressure and Temperature v(p,T) for Region 3 of the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam. 2016

  224. IAPWS; Revised Supplementary Release on Properties of Liquid Water at 0.1 MPa. 2011

  225. IAPWS; Supplementary Release on a Computationally Efficient Thermodynamic Formulation for Liquid Water for Oceanographic Use. 2009

  226. IAPWS; Electrolytic Conductivity (Specific Conductance) of Liquid and Dense Supercritical Water from 0°C to 800°C and Pressures up to 1000 MPa. 1990

  227. IAPWS; Solubility of Sodium Sulfate in Aqueous Mixtures of Sodium Chloride and Sulfuric Acid from Water to Concentrated Solutions, from 250 °C to 350 °C. 1994

  228. IAPWS; Revised Guideline on the Critical Locus of Aqueous Solutions of Sodium Chloride. 2012

  229. IAPWS; Guideline on the IAPWS Formulation 2001 for the Thermodynamic Properties of Ammonia-Water Mixtures. 2001

  230. IAPWS; Guideline on the Use of Fundamental Physical Constants and Basic Constants of Water. 2016

  231. IAPWS; Guideline on the Henry’s Constant and Vapor-Liquid Distribution Constant for Gases in H2O and D2O at High Temperatures. 2004

  232. IAPWS; Guideline on an Equation of State for Humid Air in Contact with Seawater and Ice, Consistent with the IAPWS Formulation 2008 for the Thermodynamic Properties of Seawater. 2010

  233. IAPWS; Guideline on a Low-Temperature Extension of the IAPWS-95 Formulation for Water Vapor. 2012

  234. IAPWS; Guideline on the Thermal Conductivity of Seawater. 2015

  235. IAPWS; Guideline on a Virial Equation for the Fugacity of H2O in Humid Air. 2015

  236. IAPWS; Guideline on Thermodynamic Properties of Supercooled Water. 2015

  237. IAPWS; Thermodynamic Derivatives from IAPWS Formulations. 2014

  238. IAPWS; Industrial Calculation of the Thermodynamic Properties of Seawater. 2016

  239. Iglesias-Silva, G.A., Hall K.R.; An Equation for Prediction and/or Correlation of Second Virial Coefficients. Ind. Eng. Chem. Res. 40(8) (2001) 1968-1974, http://dx.doi.org/10.1021/ie0006817

  240. Ihmels, E.C., Lemmon, E.W.; Experimental densities, vapor pressures, and critical point, and a fundamental equation of state for dimethyl ether. Fluid Phase Equilibria 260(1) (2007) 36-48, http://dx.doi.org/10.1016/j.fluid.2006.09.016

  241. Iwasaki, S., Kondou, C., Higashi, Y.; Correlation Assessment and Temperature Dependence Check of Surface Tension and Parachor for New Low-GWP Pure Refrigerants. Trans. JSRAE 37(1) (2020) 73-80, http://dx.doi.org/10.11322/tjsrae.19-36TG_EM_OA

  242. Jacobsen, R.T, Penoncello, S.G., Beyerlein, S.W., Clarke, W.P., Lemmon, E.W.; A Thermodynamic Property Formulation for Air. Fluid Phase Equilibria, 79:113-124, 1992., http://dx.doi.org/10.1016/0378-3812(92)85124-Q

  243. Jacobsen, R.T, Penoncello, S.G., Lemmon, E.W.; A Fundamental Equation for Trichlorofluoromethane (R-11). Fluid Phase Equilibria, 80 (1992) 45-56, http://dx.doi.org/10.1016/0378-3812(92)87054-Q

  244. Jacobsen, R.T, Stewart, R.B., Jahangiri, M.; Thermodynamic Properties of Nitrogen from the Freezing Line to 2000K at Pressures to 1000MPa. J. Phys. Chem. Ref. Data, 15(2) (1986) 735-908, http://dx.doi.org/10.1007/BF00502385

  245. Jaeschke, M., Schley, P.; Ideal-Gas Thermodynamic Properties for Natural Gas Applications. Int. J. Thermophys. 16(6) (1995) 1381-1392, http://dx.doi.org/10.1007/bf02083547

  246. Jahangiri, M., Jacobsen, R.T, Stewart, R.B., McCarty, R.D.; Thermodynamic properties of ethylene from the freezing line to 450 K at pressures to 260 MPa. J. Phys. Chem. Ref. Data 15(2) (1986) 293-734, http://dx.doi.org/10.1063/1.555753

  247. Jain, A.K.; Accurate Explicit Equation for Friction Factor. J. Hydraulics Division 102(5) (1976) 674-77

  248. Jenkins, G.I., Walsh, R.E; Quick Measure of Jet Fuel Properties. Hydrocarbon Processing 47(5) (1968) 161-164

  249. Jennings, S.G.; The Mean Free Path in Air. J. Aerosol Sci. 19(2) (1988) 159-16619(2):159-166, http://dx.doi.org/10.1016/0021-8502(88)90219-4

  250. Joback, K.G., Reid, R.C.; Estimation of Pure-Component Properties from Group-Contributions.. Chemical Engineering Communications, 57 (1987) 233-243, http://dx.doi.org/10.1080/00986448708960487

  251. Joffe, J.; Vapor-Liquid Equilibria by the Pseudocritical Method. Ind. Eng. Chem. Fundam. 15(4) (1976) 298-303, http://dx.doi.org/10.1021/i160060a013

  252. Johnstone, H.F., Feild, R.B., Tassler, M.C.; Gas Absorption and Aerosol Collection in a Venturi Atomizer. Ind. Eng. Chemistry 46(8) (1954) 1601-1608, http://dx.doi.org/10.1021/ie50536a028

  253. Jossi, J.A., Stiel, L.I., Thodos, G.; The Viscosity of Pure Substances in the Dense Gaseous and Liquid Phases. AIChE Journal 8(1) (1962) 59-63, http://dx.doi.org/10.1002/aic.690080116

  254. Kadhem, Q.M.A, Al-Sahhaf, T.A., Hamam, S.E.M.; Parameters of the Modified Soave-Redlich-Kwong Equation of State for Some Chlorofluorocarbons, Hydrofluorocarbons andFluorocarbons. J. Fluorine Chem. 43(1) (1989) 87-104, http://dx.doi.org/10.1016/s0022-1139(00)81638-3

  255. Kamei, A., Beyerlein, S.W., Jacobsen, R.T.; Application of Nonlinear Regression in the Development of a Wide Range Formulation for HCFC-22. Int. J. Thermophysics, 16(5) (1995) 1155-1164, http://dx.doi.org/10.1007/BF02081283

  256. Kanitkar, D., Thodos, G.; The Thermal Conductivity of Liquid Hydrocarbons. Can. J. Chem. Eng. 47 (1969) 427-430, http://dx.doi.org/10.1002/cjce.5450470502

  257. Katti, R.S., Jacobsen, R.T, Stewart, R.B., Jahangiri, M.; Thermodynamic Properties of Neon for Temperatures from the Triple Point to 700 K at Pressures up to 700 MPa. Adv. Cryo. Eng. 31 (1986) 1189-1197, http://dx.doi.org/10.1007/978-1-4613-2213-9_132

  258. Katz, D.L., Firoozabadi, A.; Predicting Phase Behavior of Condensate/Crude-oil SystemsUsing Methane Interaction Coefficients. Journal of Petroleum Technology 30(11) (1978) 1649-1655, http://dx.doi.org/10.2118/6721-pa

  259. Kendall, J., Monroe, P.; The Viscosity of Liquids II. The Viscosity-Composition Curve for Ideal Liquid Mixtures. J. Am. Chem. Soc. 39(9) (1917) 1787-1802, http://dx.doi.org/10.1021/ja02254a001

  260. Kesler, M.G., Lee, B.I.; Improve Prediction of Enthalpy of Fractions. Hydrocarbon Processing 55(3) (1976) 153-158

  261. Kestin, J., Sengers, J.V., Kamgar-Parsi, B., Levelt Sengers, J.M.H.; New International Formulation for the Thermal Conductivity of Heavy Water. J. Phys. Chem. Ref. Data 51(1) (2022) 013102, http://dx.doi.org/10.1063/5.0084222

  262. Khan, A.R., Richardson, J.F.; The Resistance to Motion of a Solid Sphere in a Fluid.. Chem. Eng. Comm. 62 (1987) 135-150, http://dx.doi.org/10.1080/00986448708912056

  263. Kim, Y., Borgnakke, C., Sonntag, R.E.; Equation of State for 1,1-difluoroethane (R152a). Int. J. Energy Res 21(7) (1997) 575-589, http://dx.doi.org/10.1002/(sici)1099-114x(19970610)21:7<575::aid-er272>3.0.co;2-f

  264. Kiselev, S. B., Ely, J. F., Abdulagatov, I. M., Huber, M. L.; Generalized SAFT-DFT/DMT Model for the Thermodynamic, Interfacial, and Transport Properties of Associating Fluids: Application for n-Alkanols. Ind. Eng. Chem. Res. 44(17) (2005) 6916-6927, http://dx.doi.org/10.1021/ie050010e

  265. Klincewicz, K.M., Reid, R.C.; Estimation of Critical Properties with Group Contribution Methods. AIChE J. 30(1) (1984) 137-142, http://dx.doi.org/10.1002/aic.690300119

  266. Kondou, C., Nagata, R., Nii, N., Koyama, S., Higashi, Y; Surface Tension of low GWP refrigerants R1243zf, R1234ze(Z) and R1233zd(E). Int. J. Refrigeration 53 (2015) 80-89, http://dx.doi.org/10.1016/j.ijrefrig.2015.01.005

  267. Korsten, H.; Internally Consistent Prediction of Vapor Pressure and Related Properties. Ind. Eng. Chem. Res. 39(3) (2000) 813-820, http://dx.doi.org/10.1021/ie990579d

  268. Koutian, A., Assael, M.J., Huber, M.L., Perkins, R.A.; Reference Correlation of the Thermal Conductivity of Cyclohexane from the Triple Point to 640 K and up to 175 MPa. J. Phys. Chem. Ref. Data 46(1) (2017) 013102, http://dx.doi.org/10.1063/1.4974325

  269. Kozlov A.D.; Private communication with Dr. Alexander D. Kozlov, Director, VNITs SMV Russian Research Center for Standartization Information and Certification of Materials.

  270. Krauss, R., Stephan, K.; Thermal Conductivity of Refrigerants in a Wide Range of Temperature and Pressure. J. Phys. Chem. Ref. Data 18(1) (1989) 43-76, http://dx.doi.org/10.1063/1.555842

  271. Krauss, R., Weiss, V.C., Edison, T.A., Sengers, J.V., Stephan, K.; Transport Properties of 1,1-Difluoroethane (R152a). Int. J. Thermophysics 17:731-757, 1996., http://dx.doi.org/10.1007/BF01439187

  272. Kubic, W.L.; A Modification of the Martin Equation of State for Calculating Vapour-Liquid Equilibria. Fluid Phase Equilibria 9 (1982) 79-97, http://dx.doi.org/10.1016/0378-3812(82)85006-1

  273. Kumar, N.; Compressibility factors for natural and sour reservoir gases by correlations and cubic equations of state. Thesis of master of science in Petroleum Engineering, 2004, Texas Tech University.

  274. Kunz, O., Klimeck, R., Wagner, W., Jaeschke, M.; The GERG-2004 Wide-Range Equation of State for Natural Gases and Other Mixtures. GERG TM15 2007

  275. Kunz, O., Wagner, W.; The GERG-2008 Wide-Range Equation of State for Natural Gases and Other Mixtures: An Expansion of GERG-2004. J. Chem.Eng. Data 57(11) (2012) 3032-3091, http://dx.doi.org/10.1021/je300655b

  276. Laesecke, A., Krauss, R., Stephan, K., Wagner, W.; Transport Properties of Fluid Oxygen. J. Phys. Chem. Ref. Data 19(5) (1990) 1089-1122, http://dx.doi.org/10.1063/1.555863

  277. Laesecke, A., Muzny, C.D.; Reference Correlation for the Viscosity of Carbon Dioxide. J. Phys. Chem. Ref. Data 46(1) (2017) 013107, http://dx.doi.org/10.1063/1.4977429

  278. Laesecke, A., Perkins, R.A., Howley, J.B.; An improved correlation for the thermal conductivity of HCFC123 (2,2-dichloro-1,1,1-trifluoroethane). Int. J. Refrigeration 19(4) (1996) 231-238, http://dx.doi.org/10.1016/0140-7007(96)00019-9

  279. Lakshmi, D.S., Prasad, D.H.L.; A Rapid Estimation Method for Thermal Conductivity of Pure Liquids. The Chemical Engineering Journal 48 (1992) 211-14, http://dx.doi.org/10.1016/0300-9467(92)80037-b

  280. Leachman, J.W., Jacobsen, R.T, Penoncello, S.G., Lemmon, E.W.; Fundamental equations of state for Parahydrogen, Normal Hydrogen, and Orthohydrogen. J. Phys. Chem. Ref. Data, 38(3) (2009) 721-748, http://dx.doi.org/10.1063/1.3160306

  281. Lee, B.I., Kesler, M.G.; A Generalized Thermodynamic Correlation Based on Three-Parameter Corresponding States. AIChE Journal 21(3) (1975) 510-527, http://dx.doi.org/10.1002/aic.690210313

  282. Lemmon, E.W.; unpublished equation, 2007

  283. Lemmon, E.W.; preliminary equation, 2005..

  284. Lemmon, E.W.; Pseudo-Pure Fluid Equations of State for the Refrigerant Blends R-410A, R-404A, R-507A, and R-407C. Int. J. Thermophys., 24(4) (2003) 991-1006, http://dx.doi.org/10.1023/A:1025048800563

  285. Lemmon, E.W. Jacobsen, R.T; A New Functional Form and New Fitting Techniques for Equations of State with Application to Pentafluoroethane (HFC-125). J. Phys. Chem. Ref. Data 34(1) (2005) 69-108, http://dx.doi.org/10.1063/1.1797813

  286. Lemmon, E.W., Huber, M.L.; Thermodynamic Properties of n-Dodecane. Energy & Fuels, 18(4) (2004) 960-967, http://dx.doi.org/10.1021_ef0341062

  287. Lemmon, E.W., Huber, M.L., McLinden, M.O.; NIST Standard Reference Database 23: Reference FluidThermodynamic and Transport Properties-REFPROP, Version9.1, National Institute of Standards and Technology,Standard Reference Data Program, Gaithersburg, 2013..

  288. Lemmon, E.W., Ihmels, E.C.; Thermodynamic properties of the butenes: Part II. Short fundamental equations of state. Fluid Phase Equilibria 228-229 (2005) 173-187, http://dx.doi.org/10.1016/j.fluid.2004.09.004

  289. Lemmon, E.W., Jacobsen, R.T, Penoncello, S.G., Friend, D.G.; Thermodynamic Properties of Air and Mixtures of Nitrogen, Argon, and Oxygen From 60 to 2000 K at Pressures to 2000 MPa. J. Phys. Chem. Ref. Data 29, 331 (2000), http://dx.doi.org/10.1063/1.1285884

  290. Lemmon, E.W., Jacobsen, R.T.; Viscosity and Thermal Conductivity Equations for Nitrogen, Oxygen, Argon, and Air. Int. J. Thermophys., 25(1) (2004) 21-69, http://dx.doi.org/10.1023/B:IJOT.0000022327.04529.f3

  291. Lemmon, E.W., Jacobsen, R.T.; An International Standard Formulation for the Thermodynamic Properties of 1,1,1-Trifluoroethane (HFC-143a) for Temperatures From 161 to 450 K and Pressures to 50 MPa. J. Phys. Chem. Ref. Data 29(4) (2000) 521-552, http://dx.doi.org/10.1063/1.1318909

  292. Lemmon, E.W., McLinden, M.O., Wagner, W.; Thermodynamic Properties of Propane. III. A Reference Equation of State for Temperatures from the Melting Line to 650 K and Pressures up to 1000 MPa. J. Chem. Eng. Data, 54(12) (2009) 3141-3180, http://dx.doi.org/10.1021/je900217v

  293. Lemmon, E.W., Overhoff, U., McLinden, M.O., Wagner, W.; A Reference Equation of State for the Thermodynamic Properties of Propene for Temperatures from the Melting Line to 575 K and Pressures up to 1000 MPa. to be submitted to J. Phys. Chem. Ref. Data

  294. Lemmon, E.W., Span, R.; Short Fundamental Equations of State for 20 Industrial Fluids. J. Chem. Eng. Data, 2006, 51 (3), pp 785–850, http://dx.doi.org/10.1021/je050186n

  295. Lemmon, E.W., Span, R.; Thermodynamic Properties of R-227ea, R-365mfc, R-115, and R-13I1. J. Chem. Eng. Data, 60(12) (2015) 3745-3758, http://dx.doi.org/10.1021/acs.jced.5b00684

  296. Lemmon, E.W., Span, R.; Short Fundamental Equations of State for 20 Industrial Fluids. J. Chem. Eng. Data, 51(3) (2006) 785-850, http://dx.doi.org/10.1021/je050186n

  297. Lenoir, J.M.; Effect of Pressure on Thermal Conductivity of Liquids. Petroelum Refiner 36(8) 1508

  298. Letsou, A., Stiel, L.I.; Viscosity of Saturated Nonpolar Liquids at Elevated Pressures. AIChE Journal 19(2) (1973) 409-411, http://dx.doi.org/10.1002/aic.690190241

  299. Li, C.C.; Thermal Conductivity of Liquid Mixtures. AIChE Journal 22(5) (1976) 927-930, http://dx.doi.org/10.1002/aic.690220520

  300. Li, J., Tillner-Roth, R., Sato, H., Watanabe, K.; An Equation of State for 1,1,1-Trifluoroethane (R-143a). Int. J. Thermophys., 20(6) (1999) 1639-1651, http://dx.doi.org/10.1023/A:1022645626800

  301. Li, J., Xia, L., Xiang, S.; A New Method Based on Elements and Chemical Bonds for Organic Compounds Critical Properties Estimation. Fluid Phase Equil. 417 (2016) 1-6, http://dx.doi.org/10.1016/j.fluid.2016.01.008

  302. Lin, H., Duan, Y.-Y.; Empirical Correction to the Peng-Robinson Equation of State for the Saturated Region. Fluid Phase Equilibria 233 (2005) 194-203, http://dx.doi.org/10.1016/j.fluid.2005.05.008

  303. Lin, H., Duan, Y.-Y.; Empirical correction to the Peng-Robinson equation of state for the saturated region. Fluid Phase Equilibria 233 (2005) 194-203, http://dx.doi.org/10.1016/j.fluid.2005.05.008

  304. Lindsay, A.L., Bromley, L.A.; Thermal Conductivity of Gas Mixtures. Ind. & Eng. Chem. 42(8) (1950) 1508-1511, http://dx.doi.org/10.1021/ie50488a017

  305. Liu, D.X., Xiang, H.W.; Corresponding-States Correlation and Prediction of Third Virial Coefficients for a Wide Range of Substances. Int. J. Thermophysics 24(6) (2003) 1667-1680, http://dx.doi.org/10.1023/b_ijot.0000004098.98614.38

  306. Livingston, J.k Morgan, R., Griggs, M.A.; The Properties of Mixed Liquids III. The Law of Mixtures I. J. Am. Chem. Soc. 39 (1917) 2261-2275, http://dx.doi.org/10.1021/ja02256a002

  307. Londono, F.E., Archer, R.A., Blasingame, T.A.; Correlations for hydrocarbon-gas viscosity and gas density-validation and correlation of behavior using a large-scale database. SPE Reserv. Evalu. Eng. 8 (6) 2005, 561–572., http://dx.doi.org/10.2118/75721-PA

  308. Lucas, K.; Die Druckabhängigheit der Viskosität von Flüssigkeiten, eine Einfache Abschätzung. Chem. Ing. Tech. 46(4) (1981) 959-960, http://dx.doi.org/10.1002/cite.330531209

  309. Lydersen, A. L.; Estimation of Critical Properties of Organic Compounds. Coll. Eng. Univ. Wisconsin, Engineering Experimental Station Rept. 3, Madison, WI (1955)

  310. Magee, J.W., Outcalt, S.L., Ely, J.F.; Molar Heat Capacity Cv, Vapor Pressure, and (p, ρ, T) Measurements from 92 to 350 K at Pressures to 35 MPa and a New Equation of State for Chlorotrifluoromethane (R13). Int. J. Thermophys., 21(5):1097-1121, 2000., http://dx.doi.org/10.1023/A:1026446004383

  311. Magoulas, S., Tassios, D.; Predictions of phase behavior of HT-HP reservoir fluids.. Paper SPE 37294, Society of Petroleum Engineers, Richardson,TX, 1990.

  312. Maloney, J.O.; Perry’s Chemical Engineers’ Handbook 8th Edition. McGraw-Hill (2008)

  313. Maloney, J.O.; Perry’s Chemical Engineers’ Handbook 8th Edition. McGraw Hill (2008)

  314. Manadilli, G.; Replace implicit equations with signomial functions.. Chem. Eng. 104 (1997) 129-132.

  315. Marrero, J.; Gani, R.; Group-contribution based estimation of pure component properties. Fluid Phase Equilib. 183-184 (2001), 183-208., http://dx.doi.org/10.1016_s0378-3812(01)00431-9

  316. Marrero-Morejon, J., Pardillo-Fontdevila, E.; Estimation of Liquid Viscosity at Ambient Temperature of Pure Organic Compounds by Using Group-Interaction Contributions. Chemical Engineering Journal 79 (2000) 69-72, http://dx.doi.org/10.1016/s1385-8947(99)00173-4

  317. Marrero-Morejón, J., Pardillo-Fontdevila, F.; Estimation of Pure Compound Properties Using Group-Interaction C9ontributions. AIChE J., 45(3) (1999) 615-621, http://dx.doi.org/10.1002/aic.690450318

  318. Marsh, K.N., Perkins, R.A., Ramires, M.L.V.; Measurement and Correlation of the Thermal Conductivity of Propane from 86 to 600 K at Pressures to 70 MPa. J. Chem. Eng. Data 47(4) (2002) 932-940, http://dx.doi.org/10.1021/je010001m

  319. Marx, V., Pruss, A., Wagner, W.; Neue Zustandsgleichungen fuer R 12, R 22, R 11 und R 113. Beschreibung des thermodynamishchen Zustandsverhaltens bei Temperaturen bis 525 K und Druecken bis 200 MPa. Düsseldorf: VDI Verlag, Series 19 (Waermetechnik/Kaeltetechnik), No. 57, 1992.

  320. Mason, E.A., Saxena, S.C.; Approximate Formula for the Thermal Conductivity of Gas Mixtures. Fhys. Fluids 1(5) (1958) 361-369, http://dx.doi.org/10.1063/1.1724352

  321. Mathias, P.M., Copeman, T.W.; Extension of the Peng-Robinson Equation of State to Complex Mixtures: Evaluation of the Various Forms of the Local Composition Concept. Fluid Phase Equilibria 13 (1983) 91-108, http://dx.doi.org/10.1016/0378-3812(83)80084-3

  322. McCarty, R.D.; Thermophysical Properties of Helium-4 from 2 to 1500 K with Pressures to 1000 MPa. NIST Technical Note 631 (1972)

  323. McCarty, R.D.; Correlations for the Thermophysical Properties of Deuterium. NIST, Boulder, CO, 1989

  324. McCarty, R.D.; Correlations for the Thermophysical Properties of Carbon Monoxide. NIST, Boulder, CO, 1989

  325. McCarty, R.D., Arp, V.D.; A New Wide Range Equation of State for Helium. Adv. Cryo. Eng., 35:1465-1475, 1990, http://dx.doi.org/10.1007/978-1-4613-0639-9_174

  326. McCarty, R.D., Hord, J., Roder, H.M.; Selected Properties of Hydrogen (Engineering Design Data). NBS Monograph 168, NBS 1981.

  327. McCarty, R.D., Jacobsen, R.T.; An Equation of State for Fluid Ethylene. Natl. Bur. Stand., Tech. Note 1045, 1981.

  328. McCarty, R.D., Weber, L.A.; Thermophysical Properties of Parahydrogen from the Freezing Liquid Line to 5000 R for Pressures to 10000 psia. NBS Technical Note 617

  329. McGarry, J.; Correlation and Perediction of the Vapor Pressures of PureLiquids over Large Pressure Ranges. Ind. Eng. Chem. Process. Des. Dev. 22 (1983) 313-322, http://dx.doi.org/10.1021/i200021a023

  330. Mchaweh, A., Alsaygh, A., Nasrifar, Kh., Moshfeghian, M.; A Simplified Method for Calculating Saturated Liquid Densities. Fluid Phase Equilibria 224 (2004) 157-167, http://dx.doi.org/10.1016/j.fluid.2004.06.054

  331. McLinden, M.O., Akasaka, R.; Thermodynamic Properties of cis-1,1,1,4,4,4-Hexafluorobutene [R-1336mzz(Z)]: Vapor Pressure, (p, ρ, T) Behavior, and Speed of Sound Measurements and Equation of State. J. Chem. Eng. Data 65(9) (2020) 4201-4214, http://dx.doi.org/10.1021/acs.jced.9b01198

  332. McLinden, M.O., Klein, S.A., Perkins, R.A.; An Extended corresponding states model for the thermal conductivity of refrigerants and refrigerant mixtures. Int. J. Refrigeration 23 (2000) 43-63, http://dx.doi.org/10.1016/s0140-7007(99)00024-9

  333. McLinden, M.O., Perkins, R.A., Lemmon, E.W., Fortin, T.J.; Thermodynamic Properties of 1,1,1,2,2,4,5,5,5-nonafluoro-4-(trifluoromethyl)-3-pentanone: Vapor Pressure, (p, ρ, T) Behavior, and Speed of Sound Measurements, and an Equation of State. J. Chem. Eng. Data 60(12) (2015) 3646-3659, http://dx.doi.org/10.1021/acs.jced.5b00623

  334. McLinden, M.O., Thol, M., Lemmon, E.W.; Thermodynamic Properties of trans-1,3,3,3-Tetrafluoropropene [R1234ze(E)]: Measurements of Density and Vapor Pressure and a Comprehensive Equation of State. International Refrigeration and Air Conditioning Conference at Purdue, July 12-15, 2010., http://dx.doi.org/10.0000_docs.lib.purdue.edu_generic-99DA7EA2C877

  335. McLinden, M.O., Younglove, B.A., Sandarusi, J.; Measurement of the PVT properties and formulation of an equation of state for refrigerant 124 (1-chloro-1,2,2,2-tetrafluoroethane). 1994. (unpublished manuscript)

  336. Melhem, G.A., Saini, R., Goodwin, B.M.; A Modified Peng-Robinson Equation of State. Fluid Phase Equilibria 47 (1989) 189-237, http://dx.doi.org/10.1016/0378-3812(89)80176-1

  337. Meng, L., Duan, Y.Y. Li, L.; Correlations for Second and Third Virial Coefficients of Pure Fluids. Fluid Phase Equilibria 226 (2004) 109-120, http://dx.doi.org/10.1016/j.fluid.2004.09.023

  338. Meng, X.Y., Cao, F.L., Wu, J.T., Vesovic, V.; Reference Correlation of the Viscosity of Ethylbenzene from the Triple Point to 673 K and up to 110 MPa. J. Phys. Chem. Ref. Data 46(1) (2017) 013101, http://dx.doi.org/10.1063/1.4973501

  339. Meng, X.Y., Sun, Y.K., Cao, F.L., Wu, J.T., Vesovic, V.; Reference Correlation of the Viscosity of n-Hexadecane from the Triple Point to 673 K and up to 425 MPa. J. Phys. Chem. Ref. Data 47(3) (2018) 033102, http://dx.doi.org/10.1063/1.5039595

  340. Michailidou, E.K., Assael, M.J., Huber, M.L., Abdulagatov, I.M., Perkins, R.A.; Reference Correlation of the Viscosity of n-Heptane from the Triple Point to 600 K and up to 248 MPa. J. Phys. Chem. Ref. Data 43(2) (2014) 023103, http://dx.doi.org/10.1063/1.4875930

  341. Michailidou, E.K., Assael, M.J., Huber, M.L., Perkins, R.A.; Reference Correlation of the Viscosity of n-Hexane from the Triple Point to 600 K and up to 100 MPa. J. Phys. Chem. Ref. Data 42(3) (2013) 033104, http://dx.doi.org/10.1063/1.4818980

  342. Michels, A., Prins, C.; The Melting Lines of Argon, Krypton and Xenon up to 1500 Atm; Representation of the Results by a Law of Corresponding States. Physica 28 (1962) 101-116, http://dx.doi.org/10.1016/0031-8914(62)90096-4

  343. Mikhailov, M.D., Silva Freire, A.P.; The Drag Coefficient of a Sphere: An Approximation Using Shanks Transform. Powder Technology 237 (2013) 432-435, http://dx.doi.org/10.1016/j.powtec.2012.12.033

  344. Miller, D.G., Thodos, G.; Reduced Frost-Kalkwarf Vapor Pressure Equation. I&EC Fundamentals 2(1) (1963) 78-80, http://dx.doi.org/10.1021/i160005a015

  345. Miqueu, C., Broseta, D., Satherley, J., Mendiboure, B., Lachaise, J., Graciaa, A.; An Extended Scaled Equation for the Temperature Dependence of the Surface Tension of Pure Compounds Inferred from an Analysis of Experimental Data. Fluid Phase Equilibria 172(2) (2000) 169-182, http://dx.doi.org/10.1016/s0378-3812(00)00384-8

  346. Misic, D., Thodos, G.; The Thermal Conductivity of Hydrocarbon Gases at Normal Pressures. AIChE Journal 7(2) (1961) 264-267, http://dx.doi.org/10.1002/aic.690070219

  347. Miyamoto, H., Watanabe, K.; A Thermodynamic Property Model for Fluid-Phase Propane. Int. J. Thermophys., 21(5) (2000) 1045-1072, http://dx.doi.org/10.1023/A:1026441903474

  348. Miyamoto, H., Watanabe, K.; A Thermodynamic Property Model for Fluid-Phase n-Butane. Int. J. Thermophys., 22(2) (2001) 459-475, http://dx.doi.org/10.1023/A:1010722814682

  349. Miyamoto, H., Watanabe, K.; A Thermodynamic Property Model for Fluid-Phase Isobutane. Int. J. Thermophys., 23(2) (2002) 477-499, http://dx.doi.org/10.1023/A:1015161519954

  350. Mondejar, M.E., McLinden, M.O., Lemmon, E.W.; Thermodynamic Properties of trans-1-Chloro-3,3,3-trifluoropropene (R1233zd(E)): Vapor Pressure, (p-ρ-T) Behavior, and Spped of Sound Measurements, and Equation of State. J. Chem. Eng. Data 60(8) (2015) 2477-2489, http://dx.doi.org/10.1021/acs.jced.5b00348

  351. Monogenidou, S.A., Assael, M.J., Huber, M.L.; Reference Correlation for the Viscosity of Ammonia from the Triple Point to 725K and up to 50 MPa. J. Phys. Chem. Ref. Data 47(2) (2018) 023102, http://dx.doi.org/10.1063/1.5036724

  352. Monogenidou, S.A., Assael, M.J., Huber, M.L.; Reference Correlations for the Thermal Conductivity of Ammonia from the Triple Point to 680 K and Pressures up to 80 MPa. J. Phys. Chem. Ref. Data 47(4) (2018) 043101, http://dx.doi.org/10.1063/1.5053087

  353. Monogenidou, S.A., Assael, M.J., Huber, M.L.; Reference Correlations for the Thermal Conductivity of n-Hexadecane from the Triple Point to 700K and up to 50MPa. J. Phys. Chem. Ref. Data 47(1) (2018) 013103, http://dx.doi.org/10.1063/1.5021459

  354. Moody, L. F.; An approximate formula for pipe friction factors. Trans. ASME, 69(12) (1947) 1005-1006.

  355. Morrison, F.A.; An Introduction to Fluid Mechanics.. Cambridge University Press, 2013.

  356. Morsi, S.A., Alexander, A.J.; An Investigation of Particle Trajectories in Two-Phase Flow Systems. J. Fluid Mechanics 55(2) (1972) 193-208, http://dx.doi.org/10.1017/S0022112072001806

  357. Mulero, A., Cachadiña, I.; Recommended Correlations for the Surface Tension of Several Fluids Included in the REFPROP Program. J. Phys. Chem. Ref. Data 43(2) (2014) 023104, http://dx.doi.org/10.1063/1.4878755

  358. Mulero, A., Cachadiña, I., Bautista, D.; Recommended Correlations for the Surface Tension of n-Alkanes. J. Phys. Chem. Ref. Data 50(2) (2021) 023104, http://dx.doi.org/10.1063/5.0048675

  359. Mulero, A., Cachadiña, I., Parra, M.I.; Recommended Correlations for the Surface Tension of Common Fluids. J. Phys. Chem. Ref. Data 41(4) (2012) 043105, http://dx.doi.org/10.1063/1.4768782

  360. Muzny, C.D., Huber, M.L., Kazakov, A.F.; Correlation for the Viscosity of Normal Hydrogen Obtained from Symbolic Regression. J. Chem. Eng. Data 58(4) (2013) 969-979, http://dx.doi.org/10.1021/je301273j

  361. Mylona, S.K., Antoniadis, K.D., Assael, M.J., Huber, M.L., Perkins, R.A.; Reference Correlations of the Thermal Conductivity of o-Xylene, m-Xylene, p-Xylene, and Moderate Pressures. J. Phys. Chem. Ref. Data 43(4) (2014) 043104, http://dx.doi.org/10.1063/1.4901166

  362. Nannoolal, Y., Rarey, J., Ramjugernath, D.; Estimation of Pure Component Properties 2. Estimation of Critical Property Data by Group Contribution. Fluid Phase Equilib., 252 (2007) 1-27, http://dx.doi.org/10.1016/j.fluid.2006.11.014

  363. Nannoolal, Y., Rarey, J., Ramjugernath, D.; Estimation of Pure Component Properties 3. Estimation of the Vapor Pressure of Non-Electrolyte Organic Compounds Via Group Contributions and Group Interactions. Fluid Phase Equilib., 269 (2008) 117-133, http://dx.doi.org/10.1016/j.fluid.2008.04.020

  364. Nannoolal, Y., Rarey, J., Ramjugernath, D.; Estimation of Pure Component Properties 4. Estimation of the Saturted Liquid Viscosity of Non-Electrolyte Organic Compounds Via Group Contributions and Group Interactions. Fluid Phase Equilib., 281 (2009) 97-119, http://dx.doi.org/10.1016/j.fluid.2009.02.016

  365. Nannoolal, Y., Rarey, J., Ramjugernath, D., Cordes, W.; Estimation of Pure Component Properties 1. Estimation of the Normal Boiling Point of Non-electrolyte Organic Compounds Via Group Contributions and Group Interactions. Fluid Phase Equilib., 226 (2004) 45-63, http://dx.doi.org/10.1016/j.fluid.2004.09.001

  366. Nasrifar, K., Ayatollahi, S., Moshfeghian, M.; A Compressed Liquid Density Correlation. Fluid Phase Equilibria 168 (2000) 149-163, http://dx.doi.org/10.1016/s0378-3812(99)00336-2

  367. Nasrifar, Kh., Bolland, O.; Square-Well Potential and a New α Function for the Soave-Redlich-Kwong Equation of State. Ind. Eng. Chem. Res. 43(21) (2004) 6901-6909, http://dx.doi.org/10.1021/ie049545i

  368. Nasrifar, Kh., Moshfeghian, M.; A New Cubic Equation of State for Simple Fluids: Pure and Mixture. Fluid Phase Equilibria 190 (2001) 73-88, http://dx.doi.org/10.1016/s0378-3812(01)00592-1

  369. Nath, J.; Acentric Factor and the Critical Volumes for Normal Fluids. Ind. Eng. Chem. Fundam. 21(3) (1985) 325-326, http://dx.doi.org/10.1021/i100007a023

  370. Nelson, H.F., Sauer, H.J.; Formulation of High-Temperature Properties for Moist Air. HVAC&R Research 8(2) (2002) 311-334, http://dx.doi.org/10.1080/10789669.2002.10391444

  371. Neufeld, P.D., Janzen, A.R., Aziz, R.A.; Empirical Equations to Calculate 16 of the Transport Collision Integrals Ω for the Lennard-Jones Potential. J. Chem. Phys. 57(3) (1972) 1100-1102, http://dx.doi.org/10.1063/1.1678363

  372. Nishiumi, H., Saito, S.; An Improved Generalized BWR Equation of State Applicable to Low Reduced Temperatures. J. Chem. Eng. Japan 8(5) (1975) 356-360, http://dx.doi.org/10.1252/jcej.8.356

  373. Okada, M., Shibata, T., Sato. Y., Higashi, Y.; Surface Tension of HFC Refrigerant Mixtures. Int. J. Thermophysics 20(1) (1999) 119-127, http://dx.doi.org/10.1023/a:1021482231102

  374. Okada, M., Shibata, T., Sato. Y., Higashi, Y.; Surface Tension of HFC Refrigerant Mixtures. Int. J. Thermophysics 20(1) (1999) 119-127, http://dx.doi.org/10.1023/A:1021482231102

  375. Olchowy, G.A., Sengers, J.V.; A Simplified Representation for the Thermal Conductivity of Fluids in the Critical Region. Int. J. Thermophys. 10(2) (1989) 417-426, http://dx.doi.org/10.1007/bf01133538

  376. Orbey, H.; A Four Parameter Pitzer-Curl Type Correlation of Second Virial Coefficients. Chemical Engineering Comm. 65(1) (1988) 1-19, http://dx.doi.org/10.1080/00986448808940239

  377. Orbey, H., Vera, J.H.; Correlation for the Third Virial Coefficient Using Tc, Pc and ω as Parameters. AIChE Journal 29(1) (1983) 107-113, http://dx.doi.org/10.1002/aic.690290115

  378. Ortiz-Vega, D.O.; A New Wide Range Equation of State for Helium-4. Doctoral Dissertation, Texas A&M University (2013), http://dx.doi.org/1969.1/151301

  379. Outcalt, S.L. McLinden, M.O.; An Equation of State for the Thermodynamic Properties of R236fa. NIST report to sponsor under contract N61533-94-F-0152, 1995.

  380. Outcalt, S.L., McLinden, M.O.; Equations of State for the Thermodynamic Properties of R32 (Difluoromethane) and R125 (Pentafluoroethane). Int. J. Thermophysics 16(1) (1995) 79-89., http://dx.doi.org/10.1007/BF01438959

  381. Outcalt, S.L., McLinden, M.O.; An Equation of State for the Thermodynamic Properties of R143a (1,1,1-Trifluoroethane). Int. J. Thermophys., 18(6) (1997) 1445-1463, http://dx.doi.org/10.1007/BF02575344

  382. Outcalt, S.L., McLinden, M.O.; A modified Benedict-Webb-Rubin Equation of State for the Thermodynamic Properties of R152a (1,1-difluoroethane). J. Phys. Chem. Ref. Data 25(2) (1996) 605-636, http://dx.doi.org/10.1063/1.555979

  383. Overhoff, U.; Development of a New Equation of State for the Fluid Region of Propene for Temperatures from the Melting Line to 575 K with Pressures to 1000 MPa as well as Software for the computation of thermodynamic properties of fluids. PhD. Dissertation, Ruhr University, Bochum Germany, 2006

  384. Pachaiyappan, V., Ibrahim, S.H., Kuloor, N.R.; Thermal Conductivities of Organic Liquids: A New Correlation. J. Chem. Eng. Data, 11 (1966) 73-76, http://dx.doi.org/10.1021/je60028a021

  385. Pal, A., Pope, G., Arai, Y., Carnahan, N., Kobayashi, R.; Experimental Pressure-Volume-Temperature Relations for Saturated and Compressed Fluid Ethane. J. Chem. Eng. Data 21(4) (1976) 394-397, http://dx.doi.org/10.1021@je60071a008

  386. Pan, J., Rui, X., Zhao, X., Qiu, L.; An equation of state for the thermodynamic properties of 1,1,1,3,3,3-hexafluoropropane (HFC-236fa). Fluid Phase Equilib., 321 (2012) 10-16, http://dx.doi.org/10.1016/j.fluid.2012.02.012

  387. Panasiti, M.D., Lemmon, E.W., Penoncello, S.G., Jacobsen, R.T, Friend, D.G.; Thermodynamic Properties of Air from 60 to 2000 K at Pressures up to 2000 MPa. Int. J. Themophys. 20(1) (1999) 217-228, http://dx.doi.org/10.1023/a:1021450818807

  388. Papaevangelou, G., Evangelides, C., Tzimopoulos, C.,; A new explicit relation for friction coefficient in the Darcy-Weisbach equation. Proceedings of the Tenth Conference on Protection and Restoration of the Environment 166,1-7pp, PRE10 July 6-09 2010 Corfu, Greece.

  389. Papay, J.A.,; Termelestechnologiai Parameterek Valtozasa a GazlelepkMuvelese. Soran. OGIL MUSZ, Tud, Kuzl. [Budapest], 1985. pp. 267–273.

  390. Patel, N.C.; Improvements of the Patel-Teja Equation of State. Int. J. Thermophysics 17(3) (1996) 673-682, http://dx.doi.org/10.1007/bf01441513

  391. Patel, N.C., Teja, A.S.; A New Cubic Equation of State for Fluids and Fluid Mixtures. Chem. Eng. Sci. 37(3) (1982) 463-473, http://dx.doi.org/10.1016/0009-2509(82)80099-7

  392. Peng, D.-Y.; Accelerated Successive Substitution Schemes for Bubble-Point and Dew-Point Calculations. Can. J. Chem. Eng. 69(4) (1991) 978-985, http://dx.doi.org/10.1002/cjce.5450690421

  393. Peng, D.-Y., Robinson, D.B.; A New Two-Constant Equation of State. Ind. Eng. Chem. Fund. 15(1) (1976) 59-64, http://dx.doi.org/10.1021/i160057a011

  394. Peng, D.-Y., Robinson, D.B.; Two- and Three-Phase Equilibrium Calculations for Coal Gasification and Related Processes. in Newman, Barner, Klein, Sandler (Eds.). Thermodynamic of Aqueous Systems with Industrial Applications. ACS (1980), pag. 393-414, http://dx.doi.org/10.1021/bk-1980-0133.ch020

  395. Penoncello, S.G., Jacobsen, R.T., Goodwin, A.R.H.; A Thermodynamic Property Formulation for Cyclohexane. Int. J. Thermophys., 16(2) (1995) 519-531, http://dx.doi.org/10.1007/BF01441918

  396. Penoncello, S.G., Lemmon, E.W., Jacobsen, R.T, Shan, Z.; A Fundamental Equation for Trifluoromethane (R-23). J. Phys. Chem. Ref. Data 32(4) (2003) 1473-1499, http://dx.doi.org/10.1063/1.1559671

  397. Penoncello, S.G., Shan, Z., Jacobsen, R.T.; A Fundamental Equation for the Calculation of the Thermodynamic Properties of Trifluoromethane (R23). ASHRAE Trans. 106(Part 1) (2000) 739-756

  398. Perkins, R.A, Ramires, M.L.V., Nieto de Castro, C.A., Cusco, L.; Measurement and Correlation of the Thermal Conductivity of Butane from 135 K to 600 K at Pressures to 70 MPa. J. Chem. Eng. Data 47(5) (2002) 1263-1271, http://dx.doi.org/10.1021/je0101202

  399. Perkins, R.A.; Measurement and Correlation of the Thermal Conductivity of Isobutane from 114 K to 600 K at Pressures to 70 MPa. J. Chem. Eng. Data 47(5) (2002) 1272-1279, http://dx.doi.org/10.1021/je010121u

  400. Perkins, R.A. Hammerschmidt, U., Huber, M.L.; Measurement and Correlation of the Thermal Conductivity of Methylcyclohexane and Propylcyclohexane from 300 to 600 K at Pressures to 60 MPa. J. Chem. Eng. Data 53(9) (2008) 2120-2127, http://dx.doi.org/10.1021/je800255r

  401. Perkins, R.A., Friend, D.G., Roder, H.M., Nieto de Castro, C.A.; Thermal Conductivity Surface of Argon: A Fresh Analysis. Int. J. Thermophys., 12(6) (1991) 965-984, http://dx.doi.org/10.1007/BF00503513

  402. Perkins, R.A., Huber, M.L.; Measurement and Correlation of the Thermal Conductivities of Biodiesel Constituent Fluids: Methyl Oleate and Methyl Linoleate. Energy Fuels 25(5) (2011) 2383-2388, http://dx.doi.org/10.1021/ef200417x

  403. Perkins, R.A., Huber, M.L.; Measurement and Correlation of the Thermal Conductivity of Pentafluoroethane (R125) from 190 K to 512 K at Pressures to 70 MPa. J. Chem. Eng. Data 51(3) (2006) 898-904, http://dx.doi.org/10.1021/je050372t

  404. Perkins, R.A., Huber, M.L.; Measurement and Correlation of the Thermal Conductivity of 2,3,3,3-Tetrafluoroprop-1-ene (R1234yf) and trans-1,3,3,3-Tetrafluoropropene (R1234ze(E)). J. Chem. Eng. Data 56(12) (2011) 4868-4874, http://dx.doi.org/10.1021/je200811n

  405. Perkins, R.A., Huber, M.L.; Measurement and Correlation of the Thermal Conductivity of trans-1-Chloro-3,3,3-trifluoropropene (R1233zd(E)). J. Chem. Eng. Data 62(9) (2017) 2659-2665, http://dx.doi.org/10.1021/acs.jced.7b00106

  406. Perkins, R.A., Huber, M.L.; Measurement and Correlation of the Thermal Conductivity of cis-1,1,1,4,4,4-hexafluoro-2-butene. Int. J. Thermophysics 41 (2020) 103, http://dx.doi.org/10.1007/s10765-020-02681-0

  407. Perkins, R.A., Huber, M.L.; Measurement and Correlation of the Thermal Conducitivity of 1,1,1,2,2,4,5,5,5-Nanofluoro-4-(trifluromethyl)-3-pentanone. J. Chem. Eng. Data 63(8) (2018) 2783-2789, http://dx.doi.org/10.1021/acs.jced.8b00132

  408. Perkins, R.A., Huber, M.L., Assael, M.J.; Measurements of the Thermal Conductivity of 1,1,1,3,3-Pentafluoropropane (R245fa) and Correlations for the Viscosity and Thermal Condutivity Surfaces. J. Chem. Eng. Data 61(9) (2016) 3286-3294, http://dx.doi.org/10.1021/acs.jced.6b00350

  409. Perkins, R.A., Laesecke, A., Howley, J., Ramires, M.L.V., Gurova, A.N., Cusco, L.; Experimental Thermal conductivity Values for the IUPAC Round-Robin Sample of 1,1,1,2-tetrafluoroethane (R134a). NIST Interagency/Internal Report (NISTIR) - 6605

  410. Piao, C.-C., Noguchi, M.; An International Standard Equation of State for the Thermodynamic Properties of HFC-125 (Pentafluoroethane). J. Phys. Chem. Ref. Data, 27(4) (1998) 775-806, http://dx.doi.org/10.1063/1.556021

  411. Platzer, B., Polt, A., Maurer, G.; Thermophysical Properties of refrigerants. Berlin: Springer-Verlag, 1990.

  412. Platzer, B., Polt, A., Maurer, G.; Thermophysical Properties of Refrigerants. Berlin: Springer-Verlag, 1990.

  413. Plöcker, U., Knapp, H., Prausnitz, J.; Calculation of High-Pressure Vapor-Liquid Equilibria from a Corresponding-States Correlation with Emphasis on Asymmetric Mixtures. Ind. Eng. Chem. Process Des. Dev. 17(3) (1978) 324-332, http://dx.doi.org/10.1021/i260067a020

  414. Poling, B.E, Prausnitz, J.M, O’Connell, J.P; The Properties of Gases and Liquids 5th Edition. McGraw-Hill, New York, 2001

  415. Polt, A., Platzer, B., Maurer, G.; Parameter der thermischen Zustandsgleichung von Bender fuer 14 mehratomige reine Stoffe. Chem. Technik 22(1992)6 - 216/224

  416. Polt, A., Platzer, B., Maurer, G.; Parameter der thermischen Zustandsgleichung von Bender fuer 14 mehratomige reine Stoffe. Chem. Technik 22(1992)6 , 216/224

  417. Proust, P., Vera, J.H.; PRSV: The Stryjek-Vera Modification of the Peng-RobinsonEquation of Stte. Parameters for Other Pure Compounds of Industrial Interest. Can. J. Chem. Eng. 67 (1989) 170-173, http://dx.doi.org/10.1002/cjce.5450670125

  418. Przedziecki, J.W., Sridhar, T.; Prediction of Liquid Viscosities. AIChE Journal 31(2) (1985) 333-335, http://dx.doi.org/10.1002/aic.690310225

  419. Péneloux, A., Rauzy, E., Fréze, R.; A Consistent Correction for Redlich-Kwong-Soave Volumes. Fluid Phase Equilibria 8 (1982) 7-23, http://dx.doi.org/10.1016/0378-3812(82)80002-2

  420. Qi, H., Fang, D., Gao, K., Meng, X., Wu, J.; Compressed Liquid Densities and Helmholtz Energy Equation of State for Fluoroethane (R161). Int. J. Thermophys. 37(3) (2016) 55, http://dx.doi.org/10.1007/s10765-016-2061-1

  421. Quinones-Cisneros, S.E., Schmidt, K.A.G., Giri, B.R, Blais, P., Marriott, R.A.,; Reference Correlation for the Viscosity Surface of Hydrogen Sulfide. J. Chem. Eng. Data 57(11) (2012) 3014-3018, http://dx.doi.org/10.1021/je300601h

  422. Quiñones-Cisneros, S.E., Deiters, U.K.; Generalization of the Friction Theory for Viscosity Modeling. J. Phys. Chem. B, 110(25) (2006) 12820-12834, http://dx.doi.org/10.1021/jp0618577

  423. Quiñones-Cisneros, S.E., Huber, M.L., Deiters, U.K.; Correlation for the Viscosity of Sulfur Hexafluoride (SF6) from the Triple Point to 1000 K and Pressures to 50 MPa. J. Phys. Chem. Ref. Data 41(2) (2012) 023102, http://dx.doi.org/10.1063/1.3702441

  424. Rabinovich, V.A., Vasserman, A.A., Nedostup, V.I., Veksler, L.S.; Thermophysical Properties of Neon, Argon, Krypton, and Xenon. Hemisphere Publishing Corp., 1988.

  425. Rachford, H.H., Rice, J.D.; Procedure for Use of Electronic Digital Computers in Calculating Flash Vaporization Hydrocarbon Equilibrium. Petroleum Transactions, AIME 195 (1952) 327-328, http://dx.doi.org/10.2118/952327-G

  426. Rackett, H.G.; Equation of State for Saturated Liquids. J. Chem. Eng. Data 15(4) (1970) 514-517, http://dx.doi.org/10.1021/je60047a012

  427. Ratanapisit, J., Ely, J.F.; Application of New, Modified BWR Equations of State to the Corresponding-States Prediction of Natural Gas Properties. Int. J. Thermophys., 20(6) (1999) 1721-1735, http://dx.doi.org/10.1023/A:1022610013596

  428. Rea, H.E., Spencer, C.F., Danner, R.P.; Effect of Pressure and Temperature on the Liquid Densities of Pure Hydrocarbons. J. Chem. Eng. Data 18(2) (1973) 227-230, http://dx.doi.org/10.1021/je60057a003

  429. Redlich, O., Kwong, J.N.S.; On the Thermodynamnics of Solutions V. An Equation of State. Fugacities of Gaseous Solutions. Chem. Rev. 44 (1949) 233-244, http://dx.doi.org/10.1021/cr60137a013

  430. Reeves, L.E., Scott, G.J., Babb, S.E. Jr.; Melting Curves of Pressure-Transmitting fluids. Fluid Phase Equilib., 222-223 (2004) 107-118, http://dx.doi.org/10.1063/1.1725068

  431. Reid, R., Prausnitz, J.M., Sherwood, T.; The Properties of Gases and Liquids, 3rd ed. New York:McGraw-Hill, 1977, p. 21..

  432. Riazi, M. R.; Characterization and Properties of Petroleum Fractions.. ASTM manual series MNL50, 2005

  433. Riazi, M.R.; Distribution Model for Properties of Hydrocarbon-Plus Fractions. Ind. Eng. Chem. Res. 28(11) (1989) 1731-1735., http://dx.doi.org/10.1021/ie00095a026

  434. Riazi, M.R., A1-Sahhaf, T.; Physical Properties of n-Alkanes and n-Alkyl Hydrocarbons: Application to Petroleum Mixtures. Ind. Eng. Chem. Res. 34(11) (1995) 4145-4148, http://dx.doi.org/10.1021/ie00038a062

  435. Riazi, M.R., A1-Sahhaf, T.A.; Physical Properties of Heavy Petroleum Fractions and CrudeOils. Fluid Phase Equilibria 117 (1996) 217-224., http://dx.doi.org/10.1016/s0378-3812(98)00251-9

  436. Riazi, M.R., Al-Sahhaf, T.A., Sl-Shammari M.A.; A Generalized Method for Estimation of Critical Constants. Fluid Phase Equilibria 147 (1998) 1-6, http://dx.doi.org/10.1016/s0378-3812(98)00251-9

  437. Riazi, M.R., Daubert, T.E.; Characterization Parameters for Petroleum Fractions. Ind. Eng. Chem. Res. 26(4) (1987) 755-759, http://dx.doi.org/10.1021/ie00064a023

  438. Riazi, M.R., Daubert, T.E.; Simplify Property Predictions. Hydrocarbon Processing (March 1980): 115–116

  439. Riazi, M.R., Daubert, T.E.; Analytical Correlations Interconvert Distillation Curve Types. Oil & Gas Journal 84 (1986) 50-57

  440. Riazi, M.R., Faghri, A.; Thermal Conductivity of Liquid and Vapor Hydrocarbon Systems: Pentanes and Heavier at Low Pressures. Ind. Eng. Chem. Process Des. Dev. 24 (1985) 398-401, http://dx.doi.org/10.1021/i200029a030

  441. Riazi, M.R., Nasimi, N., Roomi, Y.; Estimating Sulfur Content of Petroleum Products and Crude Oils. Ind. Eng. Chem. Res. 38(11) (1999) 4507-4512, http://dx.doi.org/10.1021/ie990262d

  442. Richardson, I.A., Leachman, J.W., Lemmon, E.W.; Fundamental Equation of State for Deuterium. J. Phys. Chem. Ref. Data 43(1) (2014) 013103, http://dx.doi.org/10.1063/1.4864752

  443. Richter, M., McLinden, M.O., Lemmon, E.W.; Thermodynamic Properties of 2,3,3,3-Tetrafluoroprop-1-ene (R1234yf): Vapor Pressure and p-ρ-T Measurements and an Equation of State. J. Chem. Eng. Data, 56(7) (2011) 3254-3264, http://dx.doi.org/10.1021/je200369m

  444. Riedel, L.; Kritischer Koeffizient, Dichte des gesättigten Dampfes und Verdampfungswärme: Untersuchungen über eine Erweiterung des Theorems der übereinstimmenden Zustände. Teil III. Chem. Ingr. Tech., 26(12) (1954) 679-683, http://dx.doi.org/10.1002/cite.330261208

  445. Riedel, L.; Die Zustandsfunktion des realen Gases: Untersuchungen über eine Erweiterung des Theorems der übereinstimmenden Zustände. Chem. Ings-Tech. 28 (1956) 557-562, http://dx.doi.org/10.1002/cite.330280809

  446. Riedel, L.; Die Flüssigkeitsdichte im Sättigungszustand. Untersuchungen über eine Erweiterung des Theorems der übereinstimmenden Zustände. Teil II.. Chem. Eng. Tech. 26(5) (1954) 259-264, http://dx.doi.org/10.1002/cite.330260504

  447. Robinson, D.B., Peng, D.Y.; The characterization of the heptanes and heavier fractions. Research Report 28. GPA, 1978. Tulsa, OK.

  448. Romeo, E., Royo, C., Monzon, A.; Improved explicit equation for estimation of the frictionfactor in rough and smooth pipes.. Chem. Eng. J. 86(3) (2002) 369-374, http://dx.doi.org/10.1016/S1385-8947(01)00254-6

  449. Romeo, R.; Density measurements in subcooled water at presures up to 400 MPa. Doctoral thesis, Politecnico di Torino, 2018, http://dx.doi.org/10.6092_polito_porto_2652785

  450. Round, G.F.; An Explicit Approximation for the Friction Factor-ReynoldsNumber Relation for Rough and Smooth Pipes. Can. J. Chem. Eng. 58 (1980) 122-123, http://dx.doi.org/10.1002/cjce.5450580119

  451. Rowe, A.M.; Internally Consistent Correlations for Predicting PhaseCompositions for Use in Reservoir Compositional Simulators. Paper SPE 7475, In: Presented at the 53rd Annual Society ofPetroleum Engineers Fall Technical Conference and Exhibition,1978., http://dx.doi.org/10.2118/7475-MS

  452. Rui, X., Pan, J., Wang, Y.; An Equation of State for Thermodynamic Properties of 1,1,1,2,3,3-Hexafluoropropane (R236ea). Fluid Phase Equilibria 341 (2013) 78-85, http://dx.doi.org/10.1016/j.fluid.2012.12.026

  453. Sakoda, N., Uematsu, M.; A Thermodynamic Property Model for Fluid Phase Hydrogen Sulfide. Int. J. Thermophys., 25(3) (2004) 709-737, http://dx.doi.org/10.1023/B:IJOT.0000034234.06341.8a

  454. Salerno, S, Cascella, M., May, D., Watson, P., Tassios, D.; Prediction of Vapor Pressures and Saturated Volumes with aSimple Cubic Equation of State: Part I. A Reliable DataBase. Fluid Phase Equilibria 27 (1986) 15-34, http://dx.doi.org/10.1016/0378-3812(86)87038-8

  455. Salim, P.H., Trebble, M.A.; A Modified Trebble-Bishnoi Equation of State: Thermodynamic Consistency Revisited. Fluid Phase Equilibria 65 (1991) 59-71, http://dx.doi.org/10.1016/0378-3812(91)87017-4

  456. Samadianfard, S.; Gene expression programming analysis of implicit Colebrook-White equation in turbulent flow friction factor calculation. J. Pet. Sci. Eng. 92-93 (2012) 48-55, http://dx.doi.org/10.1016/j.petrol.2012.06.005

  457. Sancet, J.,; Heavy Faction C7+ Characterization for PR-EOS.. SPE 113025, 2007 SPE Annual Conference, November 11–14,Anaheim, CA 2007., http://dx.doi.org/10.2118/113026-stu

  458. Sandarusi, J.A., Kidnay, A.J., Yesavage, V.F.; Compilation of Parameters for a Polar Fluid Soave-Redlich-Kwong Equation of State. Ind. Eng. Chem. Process Des. Dev. 25(4) (1986) 957-963, http://dx.doi.org/10.1021/i200035a020

  459. Sanjari E, Lay E.N.; An accurate empirical correlation for predicting natural gas compressibility factors.. Journal of Natural Gas Chemistry 21(2012):184-188., http://dx.doi.org/10.1016/s1003-9953(11)60352-6

  460. Sanjari, E., Honarmand, M., Badihi, H., Ghaheri, A.; An Accurate Generalized Model for Predict Vapor Pressure of Refrigerants. International Journal of Refrigeration 36 (2013) 1327-1332, http://dx.doi.org/10.1016/j.ijrefrig.2013.01.007

  461. Santamaría-Pérez, D., Mukherjee, G.D., Schwager, B., Boehler, R.; High-pressure melting curve of helium and neon: Deviations from corresponding states theory. Physical Review B 81 (2010) 214101, http://dx.doi.org/10.1103/PhysRevB.81.214101

  462. Sarem, A.M.; Z-Factor Equation Developed for Use in Digital Computers.. Oil and Gas J. (Sept. 18, 1961) 118

  463. Sastri, S.R.S., Rao, K.K.; A Simple Method to Predict Surface Tension of Organic Liquids. Chem. Eng. Journal 59(2) (1995) 181-186, http://dx.doi.org/10.1016/0923-0467(94)02946-6

  464. Saul, A., Wagner, W.; A Fundamental Equation for Water Covering theRange from the Melting Line to 1273 K atPressures up to 25000 MPa. J. Phys. Chem. Ref. Data 18(4) (1989) 1537-1564, http://dx.doi.org/10.1063/1.555836

  465. Scalabrin, G., Marchi, P., Finezzo, F.; A Reference Multiparameter Thermal Conductivity Equation for Carbon Dioxide with an Optimized Functional Form. J. Phys. Chem. Ref. Data 35(4) (2006) 1549-1575, http://dx.doi.org/10.1063/1.2213631

  466. Schmidt, K.A.G., Carroll, J.J., Quinones-Cisneros, S.E., Kvamme, B.; Hydrogen Sulfide Viscosity Modeling. Energy & Fuels 22(5) (2008) 3424-3434, http://dx.doi.org/10.1021/ef700701h

  467. Schmidt, R., Wagner, W.; A New Form of the Equation of State for Pure Substances and its Application to Oxygen. Fluid Phase Equuilibria. 19 (1985) 175-200, http://dx.doi.org/10.1016/0378-3812(85)87016-3

  468. Schroeder, J.A.; Penoncello, S.G.; Schroeder, J.S.; A Fundamental Equation of State for Ethanol. J. Phys. Chem. Ref. Data 43(4) (2014) 043102, http://dx.doi.org/10.1063/1.4895394

  469. Serghides, T.K.; Estimate friction factor accurately. Chem. Eng., 91(5) (1984) 63-64.

  470. Setzmann, U., Wagner, W.; A New Equation of State and Tables of Thermodynamic Properties for Methane Covering the Range from the Melting Line to 625 K at Pressures up to 1000 MPa. J. Phys. Chem. Ref. Data, 20(6) (1991) 1061-1155, http://dx.doi.org/10.1063/1.555898

  471. Shacham. M.; An explicit equation for friction factor in pipe. Ind. Eng. Chem. Fund. 19 (1981) 228-229.

  472. Shan, Z., Penoncello, S.G., Jacobsen, R.T.; A Generalized Model for Viscosity and Thermal Conductivity of Trifluoromethane (R-23). ASHRAE Trans. 106(Part 1) (2000) 757-767

  473. Shokir, Eissa M.El-M., El-Awad, Musaed N., Al-Quraishi, Adulhrahman A., Al-Mahdy, Osama A.; Compressibility factor model of sweet, sour, and condensate gases using genetic programming. Chem. Eng. Res. Des. 90 (2012), 785-792., http://dx.doi.org/10.1016/j.cherd.2011.10.006

  474. Silva, M.B., Rodriguez, F.; Automatic fitting of equations of state for phase behaviormatching.. Paper SPE 23703, Society of Petroleum Engineers, Richardson,TX, 1992., http://dx.doi.org/10.2118/23703-MS

  475. Sim, W.J., Daubert, T.E.; Prediction of Vapor-Liquid Equilibria of UndefinedMixtures. Ind. Eng. Chem. Process Des. Dev. 19(3) (1980) 386-393, http://dx.doi.org/10.1021/i260075a010

  476. Singh, B., Mutyala, S.R., Puttagunta, V.; Viscosity range from one test. Hydrocarbon Processing 69 (1990) 39-41

  477. Smukala, J., Span, R., Wagner, W.; New equation of state for ethylene covering the fluid region from the melting line to 450 K at pressures up to 300 MPa. J. Phys. Chem. Ref. Data 29(5) (2000) 1053-1121, http://dx.doi.org/10.1063/1.1329318

  478. Soave, G.; Equilibrium Constants from a modified Redlich-Kwong Equation of State. Chem. Eng. Sci. 27 (1972) 1197-1203, http://dx.doi.org/10.1016/0009-2509(72)80096-4

  479. Soave, G.; Application of a Cubic Equation of State to Vapor-Liquid Equilibria of Systems Containing Polar Compounds. Inst. Chem. Eng. Symp. Ser. 56 (1979) 1.2/1-1.2/16

  480. Soave, G.; Improvement of the van der Waals Equation of State. Chem. Eng. Sci. 39(2) (1984) 357-369, http://dx.doi.org/10.1016/0009-2509(84)80034-2

  481. Soave, G.S.; An Effective Modification of the Benedict-Webb-Rubin Equation of State. Fluid Phase Equilibria 164(2) (1999) 157-172, http://dx.doi.org/10.1016/s0378-3812(99)00252-6

  482. Soave, G.S.; A Noncubic Equation of State for the Tretament of Hydrocarbon Fluids at Rerservoir Conditions. Ind. Eng. Chem. Res. 34(11) (1995) 3981-3994, http://dx.doi.org/10.1021/ie00038a039

  483. Sonnad, J.R., Goudar, C.T.; Explicit Reformulation of the Colebrook-White Equation for Turbulent Flow Frcition Factor Calculation. Ind. Eng. Chem. Res. 46(8) (2007) 2593-2600, http://dx.doi.org/10.1021/ie0340241

  484. Soreide, I.; Improved Phase Behavior Predictions of Petroleum ReservoirFluids From a Cubic Equation of State.. Doctor of engineering dissertation. Norwegian Institute ofTechnology, Trondheim, 1989.

  485. Sotiriadou, S., Ntonti, E., Velliadou, D., Antoniadis, K.D., Assael, M.J., Huber, M.L.,; Reference Correlation for the Viscosity of Ethanol from the Triple Point to 620 K and Pressures up to 102 MPa. Int. J. Thermophysics 44 (2023) 40, http://dx.doi.org/10.1007/s10765-022-03149-z

  486. Span, R.; Multiparameter Equations of State: An Accurate Source of Thermodynamic Property Data. Springer, 2000

  487. Span, R., Lemmon, E.W., Jacobsen, R.T, Wagner, W., Yokozeki, A.; A Reference Equation of State for the Thermodynamic Properties of Nitrogen for Temperatures from 63.151 to 1000 K and Pressures to 2200 MPa. J. Phys. Chem. Ref. Data 29(6) (2000) 1361-1433, http://dx.doi.org/10.1063/1.1349047

  488. Span, R., Wagner, W.; Equations of state for technical applications. II. Results for nonpolar fluids.. Int. J. Thermophys. 24 (1) (2003) 41-109, http://dx.doi.org/10.1023/A:1022310214958

  489. Span, R., Wagner, W.; A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple‐Point Temperature to 1100K at Pressures up to 800MPa. J. Phys. Chem. Ref. Data, 25(6) (1996) 1509-1596, http://dx.doi.org/10.1063/1.555991

  490. Span, R., Wagner, W.; Equations of State for Technical Applications. III. Results for Polar Fluids. Int. J. Thermophys., 24(1) (2003) 111-162, http://dx.doi.org/10.1023/A:1022362231796

  491. Spencer, C.F., Danner, R.P.; Improved Equation for Prediction of Saturated Liquid Density. J. Chem. Eng. Data 17(2) (1972) 236-241, http://dx.doi.org/10.1021/je60053a012

  492. Spencer, C.F., Danner, R.P.; Prediction of Bubble-Point Density of Mixtures. J. Chem. Eng. Data 18(2) (1973) 230-234, http://dx.doi.org/10.1021/je60057a007

  493. Standing, M.B.; Volumetric and Phase Behavior of Oil Field HydrocarbonSystems.. Society of Petroleum Engineers, Dallas, TX. 1977

  494. Starling, K.E.; Fluid Thermodynamics Properties of Light Petroleum Systems. Gulf Publishing Company, 1973

  495. Starling, K.E.; Fluid Thermodynamic Properties for Light Petroleum Systems. Gulf Publishing Company, 1973.

  496. Stephan, K., Krauss, R., Laesecke, A.; Viscosity and Thermal Conductivity of Nitrogen for a Wide Range of Fluid States. J. Phys. Chem. Ref. Data 16(4) (1987) 993-1023, http://dx.doi.org/10.1063/1.555798

  497. Stewart, R.B., Jacobsen, R.T.; Thermodynamic Properties of Argon from the Triple Point to 1200 K at Pressures to 1000 MPa. J. Phys. Chem. Ref. Data, 18(2):639-798, 1989, http://dx.doi.org/10.1063/1.555829

  498. Stiel, L.I., Thodos, G.; The Viscosity of Nonpolar Gases at Normal Pressures. AIChE J. 7(4) (1961) 611-615, http://dx.doi.org/10.1002/aic.690070416

  499. Stiel, L.I., Thodos, G.; The Viscosity of Polar Substances in the Dense Gaseous and Liquid Regions. AIChE Journal 10(2) (1964) 275-277, http://dx.doi.org/10.1002/aic.690100229

  500. Stiel, L.I., Thodos, G.; The Thermal Conductivity of Nonpolar Substances in the Dense Gaseous and Liquid Regions. AIChE Journal 10(1) (1964) 26-30, http://dx.doi.org/10.1002/aic.690100114

  501. Stryjek, R., Vera, J.H.; PRSV: An Improved Peng—Robinson Equation of State for Pure Compounds and Mixtures. Can. J. Chem. Eng. 64 (1986) 323-333, http://dx.doi.org/10.1002/cjce.5450640224

  502. Stryjek, R., Vera, J.H.; PRSV2: A Cubic Equation of State for Accurate Vapor—Liquid Equilibria calculations. Can. J. Chem. Eng. 64 (1986) 820–826, http://dx.doi.org/10.1002/cjce.5450640516

  503. Sun, L., Ely, J.F.; Universal equation of state for engineering application: Algorithm and application to non-polar and polar fluids. Fluid Phase Equilib., 222-223 (2004) 107-118, http://dx.doi.org/10.1016/j.fluid.2004.06.028

  504. Sun, L., Ely, J.F.; Universal equation of state for engineering application: Algorithm and application tonon-polar and polar fluids. Fluid Phase Equilib., 222-223 (2004) 107-118, http://dx.doi.org/10.1016/j.fluid.2004.06.028

  505. Sun, T.F., Schouten, J.A., Trappeniers, N.J., Biswas, S.N.; Accurate Measurement of the Melting Line of Methanol and Ethanol at Pressures up to 270 MPa. Ber. Bunsenges. Phys. Chem. 92 (1988) 652-655, http://dx.doi.org/10.1002/bbpc.198800153

  506. Sunaga, H., Tillner-Roth, R., Sato, H., Watanabe, K.; A Thermodynamic Equation of State for Pentafluoroethane (R-125). Int. J. Thermophys., 19(6) (1998) 1623-1635, http://dx.doi.org/10.1007/BF03344914

  507. Swamee, P.K., Ojha, C.S.P.; Drag Coefficient and Fall Velocity of Nonspherical Particles. J. Hydraul. Eng. 117(5) (1991) 660-667, http://dx.doi.org/10.1061/(ASCE)0733-9429(1991)117:5(660)

  508. Swamee, P.K.; Jain, A.K.; Explicit equations for pipe-flow problems. J. Hydraulics Division (ASCE) 102(5) (1976) 657-664.

  509. Sykioti, E.A., Assael, M.J., Huber, M.L.,Perkins, R.A.; Reference Correlations of the Thermal Conductivity of Methanol from the Triple Point to 660 K and up to 245 MPa. J. Phys. Chem. Ref. Data 42(4) (2013) 043101, http://dx.doi.org/10.1063/1.4829449

  510. Takacs., G.; Comparing Methods for Calculating Z-factor. Oil & Gas Journal, May 15, 1989, pp. 43-46.

  511. Tanaka, K., Higashi, Y.; Surface Tensions of trans-1,3,3,3-Tetrafluoropropene and trans-1,3,3,3-Tetrafluoropropene + Difluoromethane Mixture. J. Chem. Eng. Japan 46(6) (2013) 371-375, http://dx.doi.org/10.1252/jcej.13we021

  512. Tanaka, Y., Sotani, T.; Thermal Conductivity and Viscosity of 2,2-Dichioro-1,1,1-Trifluoroethane (HCFC-123). Int. J. Thermophys. 17(2) (1996) 293-328, http://dx.doi.org/10.1007/BF01443394

  513. Tarakad, R.R., Danner, R.P.; An Improved Corresponding States Method for Polar Fluids: Correlation of Second Virial Coefficients. AIChE J. 23(5) (1977) 685-695, http://dx.doi.org/10.1002/aic.690230510

  514. Tariq, U., Jusoh, A.R.B., Riesco, N., Vesovic, V.; Reference Correlation of the Viscosity of Cyclohexane from the Triple Point to 700K and up to 110 MPa. J. Phys. Chem. Ref. Data 43(3) (2014) 033101, http://dx.doi.org/10.1063/1.4891103

  515. Tasidou, K.A., Huber, M.L., Assael, M.J.; Reference Correlation for the Viscosity of Cyclopentane from the Triple Point to 460 K and up to 380 MPa. J. Phys. Chem. Ref. Data 48(4) (2019) 043101, http://dx.doi.org/10.1063/1.5128321

  516. Tegeler, Ch., Span, R., Wagner, W.; A New Equation of State for Argon Covering the Fluid Region for Temperatures From the Melting Line to 700 K at Pressures up to 1000 MPa. J. Phys. Chem. Ref. Data 28, 779 (1999), http://dx.doi.org/10.1063/1.556037

  517. Terfous, A., Hazzab, A., Ghenaim, A.; Predicting the Drag Coefficient and Settling Velocity of Spherical Particles. Powder Technology 239 (2013) 12-20, http://dx.doi.org/10.1016/j.powtec.2013.01.052

  518. Thelen, B.; Python refprop wrapper, https://github.com/BenThelen/python-refprop.

  519. Thol, M., Dubberke, F.H., Baumhögger, E., Span, R., Vrabec, J.; Speed of Sound Measurements and a Fundamental Equation of State for Hydrogen Chloride. J. Chem. Eng. Data 63(7) (2018) 2533-2547, http://dx.doi.org/10.1021/acs.jced.7b01031

  520. Thol, M., Dubberke, F.H., Baumhögger, E., Vrabec, J., Span, R.; Speed of Sound Measuements and Fundamental Equations State for Octamethyltrisiloxane and Decamethyltetrasiloxane. J. Chem. Eng. Data 62(9) (2017) 2633-2648, http://dx.doi.org/10.1021/acs.jced.7b00092

  521. Thol, M., Dubberke, F.H., Rutkai, G., Windmann, T., Köster, A., Span, R., Vrabec, J.; Fundamental equation of state correlation for hexamethyldisiloxane based on experimental and molecular simulation data. Fluid Phase Equilibria 418 (2016) 133-151, http://dx.doi.org/10.1016/j.fluid.2015.09.047

  522. Thol, M., Fenkl, F., Lemmon, E.W.; A Fundamental Equation of State for Chloroethene for Temperatures from the Triple Point to 430 K and Pressures to 100 MPa. Int. J. Themophysics 42 (2022) 41, http://dx.doi.org/10.1007/s10765-021-02961-3

  523. Thol, M., Herrig, S., Span, R., Lemmon, E.W.; A fundamental equation of state for the calculation of thermodynamic proeprties of chlorine. AIChE J. 67(9) (2021) 2633-2648, http://dx.doi.org/10.1002/aic.17326

  524. Thol, M., Javed, M.A., Baumhögger, E., Span, R., Vrabec, J.; Thermodynamic Properties of Dodecamethylpentasiloxane, Tetradecamethylhexasiloxane, and Decamethylcyclopentasiloxane. Ind. Eng. Chem. Res. 58(22) (2019) 9617-9635, http://dx.doi.org/10.1021/acs.iecr.9b00608

  525. Thol, M., Lemmon, E.W.; Equation of State for the ThermodynamicProperties of trans-1,3,3,3-Tetrafluoropropene[R-1234ze(E)]. Int. J. Thermophys. 37(3) (2016) 28, http://dx.doi.org/10.1007/s10765-016-2040-6

  526. Thol, M., Lemmon, E.W., Span, R.; Equation of State for Benzene for Temperatures from the Melting Line up to 750 K with Pressures up to 500 MPa. High Temperatures-High Pressures 41 (2012) 81-97

  527. Thol, M., Piazza, L., Span, R.; A New Functional Form for Equations of State for Some Weakly Associating Fluids. Int. J. Thermophys., 35(5):783-811, 2014., http://dx.doi.org/10.1007/s10765-014-1633-1

  528. Thol, M., Rutkai, G., Köster, A., Dubberke, F.H., Windmann, T., Span, R., Vrabec, J.; Thermodynamic Properties of Octamiethylciyclotetrasilosane. J. Chem. Eng. Data 61(7) (2016) 2580-2595, http://dx.doi.org/10.1021/acs.jced.6b00261

  529. Thol, M., Rutkai, G., Köster, A., Kortmann, M., Span, R., Vrabec, J.; Corrigendum to ‘Fundamental equation of state for ethylene oxide based on a hybrid dataset. Chem. Eng. Sci. 134 (2015) 887-890, http://dx.doi.org/10.1016/j.ces.2015.06.020

  530. Thol, M., Rutkai, G., Köster, A., Kortmann, M., Span, R., Vrabec, J.; Fundamental equation of state for ethylene oxide based on a hybrid dataset. Chem. Eng. Sci. 121 (2015) 87-99, http://dx.doi.org/10.1016/j.ces.2014.07.051

  531. Thol, M., Rutkai, G., Köster, A., Lustig, R., Span, R., Vrabec, J.; Equation of State for the Lennard-Jones Fluid. J. Phys. Chem. Ref. Data 45(2) (2016) 023101, http://dx.doi.org/10.1063/1.4945000

  532. Thol, M., Rutkai, G., Köster, A., Miroshnichenko, S., Wagner, W., Vrabec, J., Span, R.; Equation of state for 1,2-dichloroethane based on a hybrid data set. Molecular Physics 115(9-12) (2017) 1166-1185, http://dx.doi.org/10.1080/00268976.2016.1262557

  533. Thomson, G.H., Brobst, K.R., Hankinson, R.W.; An Improved Correlation for Densities of Compressed Liquids and Liquid Mixtures. AIChE Journal 28(4) (1982): 671-76, http://dx.doi.org/10.1002/aic.690280420

  534. Thorade, M., Saadat, A.; Partial derivatives of thermodynamic state properties for dynamic simulation. Environ Eartth Sci 70(8) (2013) 3497-3503, http://dx.doi.org/10.1007/s12665-013-2394-z

  535. Tillner-Roth, R.; A Fundamental Equation of State for 1,1-Difluoroethane (HFC-152a). Int. J. Thermophys., 16(1) (1995) 91-100, http://dx.doi.org/10.1007/BF01438960

  536. Tillner-Roth, R., Baehr, H.D.; An International Standard Formulation for the Thermodynamic Properties of 1,1,1,2-Tetrafluoroethane (HFC-134a) for Temperatures from 170 K to 455 K at Pressures up to 70 MPa. J. Phys. Chem. Ref. Data 23(5) (1994) 657-729, http://dx.doi.org/10.1063/1.555958

  537. Tillner-Roth, R., Yokozeki, A.; An International Standard Equation of State for Difluoromethane (R-32) for Temperatures from the Triple Point at 136.34 K to 435 K at Pressures up to 70 MPa. J. Phys. Chem. Ref. Data 26(6) (1997) 1273-1328, http://dx.doi.org/10.1063/1.556002

  538. Trebble, M.A.; Calculation of Constants in the Trebble-Bishnoi Equation of State with an Extended Corresponding States Approach. Fluid Phase Equilibria 45 (1989) 165-172, http://dx.doi.org/10.1016/0378-3812(89)80255-9

  539. Trebble, M.A., Bishnoi, P.R.; Development of a New Four-Parameter Cubic Equation of State. Fluid Phase Equilibria 35 (1987) 1-8, http://dx.doi.org/10.1016/0378-3812(87)80001-8

  540. Tsal, R.J.; Altshul-Tsal friction factor equation. Heating Piping Air Conditioning 8 (1989), 30-45.

  541. Tsolakidou, C.M., Assael, M.J., Huber, M.L.,Perkins, R.A.; Correlations for the Viscosity and Thermal Conductivity of Ethyl Fluoride (R161). J. Phys. Chem. Ref. Data 46(2) (2017) 023103, http://dx.doi.org/10.1063/1.4983027

  542. Tsonopoulos, C.; An Empirical Correlation of Second Virial Coefficients. AIChE Journal 20(2) (1974) 263-272, http://dx.doi.org/10.1002/aic.690200209

  543. Tsonopoulos, C., Heidman, J.L., Hwang, S.C.; Thermodynamic and Transport Properties of Coal Liquids. An Exxon Monograph, Wiley, New York, 1986

  544. Tufeu, R., Ivanov, D.Y., Garrabos, Y., Le Neindre, B.; Thermal Conductivity of Ammonia in a Large Temperature and Pressure Range Including the Critical Region. Ber. Bunsenges. Phys. Chem. 88 (1984) 422-427, http://dx.doi.org/10.1002/bbpc.19840880421

  545. Turton, R., Levenspiel, O.; A Short Note on the Drag Correlation for Spheres. Powder Technology 47(1) (1986) 83-86, http://dx.doi.org/10.1016/0032-5910(86)80012-2

  546. Twu, C.H.; An Internally Consistent Correlation for Predicting theCritical Properties and Molecular Weights of Petroleum andCoal-tar Liquids. Fluid Phase Equilbria 16 (1984) 137-150, http://dx.doi.org/10.1016/0378-3812(84)85027-x

  547. Twu, C.H., Coon, J.E., Cunningham, J.R.; A New Generalized Alpha Function for a Cubic Equation of State Part 2. Redlich-Kwong equation. Fluid Phase Equilibria 105 (1995) 61-69, http://dx.doi.org/10.1016/0378-3812(94)02602-w

  548. Twu, C.H., Coon, J.E., Cunningham, J.R.; A New Generalized Alpha Function for a Cubic Equation of State Part 1. Peng-Robinson equation. Fluid Phase Equilibria 105 (1995) 49-59, http://dx.doi.org/10.1016/0378-3812(94)02601-v

  549. Valderrama, J.O.; A Generalized Patel-Teja Equation of Stte for Polar and Nonpolar Fluids and their Mixtures. J. Chem. Eng. Jap. 23(1) (1990) 87-91, http://dx.doi.org/10.1252/jcej.23.87

  550. Valderrama, J.O., Cisternas, L.A.; A Cubic Equation of State for Polar and Other Complex Mixtures. Fluid Phase Equilibria 29 (1986) 431-438, http://dx.doi.org/10.1016/0378-3812(86)85041-5

  551. Valderrama, J.O., De la Puente, H., Ibrahim, A.A.; Generalization of a Polar-Fluid Soave-Redlich-Kwong Equation of State. Fluid Phase Equilibria 93 (1994) 377-383, http://dx.doi.org/10.1016/0378-3812(94)87021-7

  552. Valderrama, J.O., Álvarez, V.H.; A New Group Contribution Method Based on Equation of State Parameters to Evaluate the Critical Properties of Simple and Complex Molecules. Can. J. Chem. Eng. 84(4) (2006) 431-446, http://dx.doi.org/10.1002/cjce.5450840404

  553. van der Waals, J.D.; Over de Continuiteit van den Gas- En Vloestoftoestand. Dissertation, Leiden University, Leiden, Niederlande, 1873

  554. Van Nes, K., Van Western, H.A.; Aspects of the Constitution of Mineral Oils. Elsevier, New York, 1951

  555. Vargaftik, N.B., Vinogradov, Y.K., Yargin, V.S.; Handbook of Physical Properties of Liquids and Gases. Begell House, New York, 1996

  556. Vasserman A.A., Fominsky D.V.; Equations of State for the Ozone-Safe Refrigerants R32 and R125. Int. J. Thermophysics 22(4) (2001) 1089-1098, http://dx.doi.org/10.1023/a_1010699806169

  557. Vassiliou, C.-M., Assael, M.J., Huber, M.L., Perkins, R.A.; Reference Correlation of the Thermal Conductivity of Cyclopentane, iso-pentane, and n-Pentane. J. Phys. Chem. Ref. Data 44(3) (2015) 033102, http://dx.doi.org/10.1063/1.4927095

  558. Vatankhah, A.R., Kouchakzadeh, S; Full-range pipe-flow equations. Journal of Hydraulic Research 46(4) (2008) 559

  559. VDI-Gesellschaft; VDI Heat Atlas 2nd Edition. Berlin, New York. Springer 2010.

  560. Velliadou, D., Assael, M.J., Antoniadis, K.D., Huber, M.L.; Reference Correlations for the Thermal Conductivity of Xenon from the Triple Point to 606 K and Pressures up to 400 MPa. Int. J. Thermophysics 42 (2021) 51, http://dx.doi.org/10.1007/s10765-021-02803-2

  561. Velliadou, D., Tasidou, K.A., Antoniadis, K.D., Assael, M.J., Perkins, R.A., Huber, M.L.,; Reference Correlation for the Viscosity of Xenon from the Triple Point to 750 K and up to 86 MPa. Int. J. Thermophysics 42 (2021) 74, http://dx.doi.org/10.1007/s10765-021-02818-9

  562. Vesovic, V., Wakeham, W.A., Olchowy, G.A., Sengers, J.V., Watson, J.T.R., Millat, J.; The Transport Properties of Carbon Dioxide. J. Phys. Chem. Ref. Data 19(3) (1990) 763-808, http://dx.doi.org/10.1063/1.555875

  563. Vogel, E., Herrmann, S.; New Formulation for the Viscosity of Propane. J. Phys. Chem. Ref. Data 45(4) (2016) 043103, http://dx.doi.org/10.1063/1.4966928

  564. Vogel, E., Küchenmeister, C., Bich, E.; Viscosity correlation for n-Butane in the Fluid Region. High Temp. - High Pressures 31(2) (1999) 173-186, http://dx.doi.org/10.1068/htrt154

  565. Vogel, E., Küchenmeister, C., Bich, E.; Viscosity Correlation for Isobutane over Wide Ranges of the Fluid Region. Int. J. Thermophys 21(2) (2000) 343-356, http://dx.doi.org/10.1023/A:1006623310780

  566. Vogel, E., Küchenmeister, C., Bich, E., Laesecke, A.; Reference Correlation of the Viscosity of Propane. J. Phys. Chem. Ref. Data 27(5) (1998) 947-970, http://dx.doi.org/10.1063/1.556025

  567. Vogel, E., Span, R., Herrmann, S.; Reference Correlation for the Viscosity of Ethane. J. Phys. Chem. Ref. Data 44(4) (2015) 043101, http://dx.doi.org/10.1063/1.4930838

  568. Vogel, E., Wilhelm, J., Küchenmeister, C., Jaesche, M.; High-precision viscosity measurements on methane. High Temperatures-High Pressures 32(1) (2000) 73-81, http://dx.doi.org/10.1068/htwu359

  569. Wagner, W.; New Vapour Pressure Measurements for Argon and Nitrogen and a New Method for Establishing Rational Vapour Pressure Equations. Cryogenics 13, 8 (1973) 470-82, http://dx.doi.org/10.1016/0011-2275(73)90003-9

  570. Wagner, W., Cooper, J.R., Dittmann, A., Kijima, J., Kretzschmar, H.-J., Kruse, A., Mareš, R., Oguchi, K., Sato, H., Stöcker, I., Šifner, O., Takaishi, Y., Tanishita, I., Trübenbach, J., Willkommen, T.; The IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam. J. Eng. Gas Turbines & Power 122 (2000) 150-182, http://dx.doi.org/10.1115/1.483186

  571. Wagner, W., Marx, V., Pruß, A.; A New Equation of State for Chlorodifluoromethane (R22) Covering the Entire Fluid Region from 116 K to 550 K at Pressures up to 200 MPa. Int. J. Refrig., 16(6):373-389, 1993., http://dx.doi.org/10.1016/0140-7007(93)90055-D

  572. Wagner, W., Pruß, A.; The IAPWS Formulation 1995 for the ThermodynamicProperties of Ordinary Water Substance forGeneral and Scientific Use. J. Phys. Chem. Ref. Data 31, 387 (2002), http://dx.doi.org/10.1063/1.1461829

  573. Walas, S.M.; Phase Equilibria in Chemical Engineering. Butterworth, 1985

  574. Walas, S.M.; Phase Equiibria in Chemical Engineering. Butterworth-Heinemann, 1985, http://dx.doi.org/10.1016/C2013-0-04304-6

  575. Watansiri, S., Owens, V.H., Starling, K.E.; Correlations for estimating critical constants, acentricfactor, and dipole moment for undefined coal-fluidfractions. Ind. Eng. Chem. Process. Des. Dev. 24(2) (1985) 294-296, http://dx.doi.org/10.1021/i200029a013

  576. Wen, C., Meng, X., Huber, M.L., Wu, J.; Measurement and Correlation of the Viscosity of 1,1,1,2,2,4,5,5,5-Nanofluoro-4-(trifluromethyl)-3-pentanone. J. Chem. Eng. Data 62(10) (2017) 3603-3609, http://dx.doi.org/10.1021/acs.jced.7b00572

  577. Wen, X., Quiang, Y.; A New Group Contribution Method for Estimating Critical Properties of Orgnic Compounds. Ind. Eng. Chem. Res. 40(26) (2001) 6245-6250., http://dx.doi.org/10.1021/ie010374g

  578. Wilke, C.R.; A Viscosity Equation for Gas Mixtures. J. Chem. Phys. 18(4) (1950) 517-519, http://dx.doi.org/10.1063/1.1747673

  579. Willman, B., Teja, A.; Prediction of dew points of semicontinuous natural gas andpetroleum mixtures. 1. Characterization by use of aneffective carbon number and ideal solution predictions. Ind. Eng. Chem. Res. 26(5) (1987) 948-952, http://dx.doi.org/10.1021/ie00065a017

  580. Wilson, G.M. Jasperson, L.V.; Critical constants Tc and Pc, estimation based on zero, first and second order methods. Paper given at AIChE Spring National Meeting, New Orleans, LA, USA, February 25-29, 1996.

  581. Wisotzki, K.D., Wǘrflinger, A.; PVT Data for Liquid and Solid Cyclohexane, Cyclohexanone and Cyclopentanol up to 3000 bar. J. Phis. Chem. Solids 43(1) (1982) 13-20, http://dx.doi.org/10.1016/0022-3697(82)90167-6

  582. Wood D.J.; An explicit friction factor relationship. Civil Eng. ASCE 60, 1966

  583. Wu, J., Zhou, Y.; An Equation of State for Fluoroethane (R161). Int. J. Thermophys. 33(2) (2012) 220-234, http://dx.doi.org/10.1007/s10765-011-1151-3

  584. Wu, J., Zhou, Y., Lemmon, E.W.; An Equation of State for the Thermodynamic Properties of Dimethyl Ether. J. Phys. Chem. Ref. Data 40(2) (2011) 023104, http://dx.doi.org/10.1063/1.3582533

  585. Xiang, H.W., Laesecke, A., Huber, M.L.; A New Reference Correlation for the Viscosity of Methanol. J. Phys. Chem. Ref. Data 35(4) (2006) 1597, http://dx.doi.org/10.1063/1.2360605

  586. Yamada, T., Gunn. R.; Saturated Liquid Molar Volumes: The Rackett Equation. Journal of Chemical Engineering Data 18(2) (1973): 234–236, http://dx.doi.org/10.1021/je60057a006

  587. Yen, L.C., Woods, S.S.; A Generalized Equation for Computer Calculation of Liquid Densities. AIChE Journal 12(1) (1966) 95-99, http://dx.doi.org/10.1002/aic.690120119

  588. Yoon, P., Thodos, G.; Viscosity of Nonpolar Gaseous Mixtures at Normal Pressures. AIChE Journal 16(2) (1970) 300-304, http://dx.doi.org/10.1002/aic.690160225

  589. Yorizane, M., Yoshiumra, S., Masuoka, H., Yoshida, H.; Thermal Conductivities of Binary Gas Mixtures at High Pressures: N2-O2, N2-Ar, CO2-Ar, CO2-CH4. Ind. Eng. Chem. Fundam. 22(4) (1983) 458-462, http://dx.doi.org/10.1021/i100012a018

  590. Younglove, B.A.; Thermophysical Properties of Fluids. I. Argon, Ethylene, Parahydrogen, Nitrogen, Nitrogen Trifluoride, and Oxygen. J. Phys. Chem. Ref. Data, 11(Suppl. 1) (1982)

  591. Younglove, B.A., Ely, J.F.; Thermophysical Properties of Fluids. II. Methane, Ethane, Propane, Isobutane, and Normal Butane. J. Phys. Chem. Ref. Data 16(4) (1987) 577-798, http://dx.doi.org/10.1063/1.555785

  592. Younglove, B.A., Hanley, H.J.M.; The Viscosity and Thermal Conductivity Coefficients of Gaseous and Liquid Argon. J. Phys. Chem. Ref. Data 15(4) (1986) 1323-1337, http://dx.doi.org/10.1063/1.555765

  593. Younglove, B.A., McLinden, M.O.; An International Standard Equation of State for the Thermodynamic Properties of Refrigerant 123 (2,2-Dichloro-1,1,1-trifluoroethane). J. Phys. Chem. Ref. Data, 23(5) (1994) 731-779, http://dx.doi.org/10.1063/1.555950

  594. Yu, J.-M., Lu, B.C.-Y.; A Three-Parameter Cubic Equation of State for Asymmetric Mixture Density Calculations. Fluid Phase Equilibria 34 (1987) 1-19, http://dx.doi.org/10.1016/0378-3812(87)85047-1

  595. Yung, S.-C., Barbarika, H.F., Calvert, S.; Pressure Loss in Venturi Scrubbers. J. Air Pollution Control Assoc., 27(4) (1977) 348-351, http://dx.doi.org/10.1080/00022470.1977.10470432

  596. Zaboloy, M.S., Vera, J.H.; Cubic Equation of State for Pure Compound Vapor Pressure from the Triple Point to the Critical Point. Ind. Eng. Chem. Res. 35(3) (1996) 829-836, http://dx.doi.org/10.1021/ie950306s

  597. Zhou, Y., Lemmon, E.W.; Equation of State for the Thermodynamic Properties of 1,1,2,2,3-Pentafluoropropane (R-245ca). Int. J. Thermophys., 37(3) (2016) 27, http://dx.doi.org/10.1007/s10765-016-2039-z

  598. Zhou, Y., Lemmon, E.W.; Preliminary equation, 2010..

  599. Zhou, Y., Lemmon, E.W., Mahmoud, A.M.; Equations of state for RE245cb2, RE347mcc, RE245fa2 and R1216. Preliminary equation

  600. Zhou, Y., Lemmon, E.W., Wu, J.; Thermodynamic Properties of o-Xylene, m-Xylene, p-Xylene, and Ethylbenzene. J. Phys. Chem. Ref. Data 41, 023103 (2012)., http://dx.doi.org/10.1063/1.3703506

  601. Zhou, Y., Liu, J., Penoncello, S.G., Lemmon, E.W.; An Equation of State for the Thermodynamic Properties of Cyclohexane. J. Phys. Chem. Ref. Data 43 (2014) 043105, http://dx.doi.org/10.1063/1.4900538

  602. Zhou, Y., Wu, J., Lemmon, E.W.; Thermodynamic Properties of Dimethyl Carbonate. J. Phys. Chem. Ref. Data, Vol. 40, No. 4 2011, http://dx.doi.org/10.1063/1.3664084

  603. Zigrang, D.J., Sylvester, N.D.; Explicit approximations to the solution of Colebrook’sfriction factor equation. AICHE J 28, 514-515., http://dx.doi.org/10.1002/aic.690280323

  604. Zuo, Y., Stenby, E.H.; Corresponding-States and Parachor Models for the Calculation of Interfacial Tensions. Can. J. Chem. Eng. 75(6) (1997) 1130-1137, http://dx.doi.org/10.1002/cjce.5450750617